OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 6 — Feb. 20, 2005
  • pp: 1011–1017

Kinetic behavior of polymer-coated long-period-grating fiber-optic sensors

Justyna Widera, Christopher E. Bunker, Gilbert E. Pacey, Viswanath R. Katta, Michael S. Brown, Jennifer L. Elster, Mark E. Jones, James R. Gord, and Steven W. Buckner  »View Author Affiliations


Applied Optics, Vol. 44, Issue 6, pp. 1011-1017 (2005)
http://dx.doi.org/10.1364/AO.44.001011


View Full Text Article

Enhanced HTML    Acrobat PDF (158 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new method of analysis employing the time-dependent response of long-period-grating (LPG) fiber-optic sensors is introduced. The current kinetic approach allows analysis of the time-dependent wavelength shift of the sensor, in contrast to previous studies, in which the LPG sensing element has been operated in an equilibrium mode and modeled with Langmuir adsorption behavior. A detailed kinetic model presented is based on diffusion of the analyte through the outer protective membrane coating into the affinity coating, which is bound to the fiber cladding. A simpler phenomenological approach presented is based on measurement of the slope of the time-dependent response of the LPG sensor. We demonstrate the principles of the kinetic methods by employing a commercial Cu+2 sensor with a carboxymethylcellulose sensing element. The detailed mathematical model fits the time-dependent behavior well and provides a means of calibrating the concentration-dependent time response. In the current approach, copper concentrations below parts per 106 are reliably analyzed. The kinetic model allows early-time measurement for low concentrations of the analyte, where equilibration times are long. This kinetic model should be generally applicable to other affinity-coated LPG fiber-optic sensors.

© 2005 Optical Society of America

OCIS Codes
(000.1570) General : Chemistry
(060.2370) Fiber optics and optical communications : Fiber optics sensors

History
Original Manuscript: December 8, 2003
Revised Manuscript: June 4, 2004
Manuscript Accepted: June 24, 2004
Published: February 20, 2005

Citation
Justyna Widera, Christopher E. Bunker, Gilbert E. Pacey, Viswanath R. Katta, Michael S. Brown, Jennifer L. Elster, Mark E. Jones, James R. Gord, and Steven W. Buckner, "Kinetic behavior of polymer-coated long-period-grating fiber-optic sensors," Appl. Opt. 44, 1011-1017 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-6-1011


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. W. Qu, R. B. Martin, W. J. Huang, K. F. Fu, D. Zweifel, Y. Lin, Y. P. Sun, C. E. Bunker, B. A. Harruff, J. R. Gord, L. F. Allard, “Interactions of functionalized carbon nanotubes with tethered pyrenes in solution,” J. Chem. Phys. 117, 8089–8094 (2002). [CrossRef]
  2. B. A. Harruff, C. E. Bunker, “Spectral properties of AOT-protected CdS nanoparticles: quantum yield enhancement by photolysis,” Langmuir 19, 893–897 (2003). [CrossRef]
  3. K. T. V. Grattan, T. Sun, “Fiber optic sensor technology: an overview,” Sens. Actuators 82, 40–61 (2000). [CrossRef]
  4. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996). [CrossRef]
  5. V. Bhatia, A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996). [CrossRef] [PubMed]
  6. B. A. L. Gwandu, X. Shu, T. P. D. Allsop, “Simultaneous refractive index and temperature measurement using cascaded long-period grating in double-cladding fibre,” Electron. Lett. 38, 695–696 (2002). [CrossRef]
  7. C. C. Ye, S. W. James, R. P. Tatam, “Simultaneous temperature and bend sensing with long-period fiber gratings,” Opt. Lett. 25, 1007–1009 (2000). [CrossRef]
  8. H. J. Patrick, “Self-aligning, bipolar bend transducer based on long period grating written in eccentric core fibre,” Electron. Lett. 36, 1763–1764 (2000). [CrossRef]
  9. Y. Liu, L. Zhang, J. A. R. Williams, I. Bennion, “Optical bend sensor based on measurement of resonance mode splitting of long-period fiber grating,” IEEE Photon. Technol. Lett. 12, 531–533 (2000). [CrossRef]
  10. H. J. Patrick, S. T. Vohra, C. C. Chang, “Long period fibre gratings for structural bend sensing,” Electron. Lett. 34, 1773–1775 (1998). [CrossRef]
  11. S. R. M. Kueh, R. S. Parnas, S. G. Advani, “A methodology for using long-period gratings and mold-filling simulations to minimize the intrusiveness of flow sensors in liquid composite molding,” Compos. Sci. Technol. 62, 311–327 (2002). [CrossRef]
  12. Y. Liu, L. Zhang, J. A. R. Williams, I. Bennion, “Bend sensing by measuring the resonance splitting of long-period fiber gratings,” Opt. Commun. 193, 69–72 (2001). [CrossRef]
  13. Y.-G. Han, B. H. Lee, W.-T. Han, U.-C. Paek, Y. Chung, “Fibre-optic sensing applications of a pair of long-period fibre gratings,” Meas. Sci. Technol. 12, 778–781 (2001). [CrossRef]
  14. L. A. Wang, C. Y. Lin, G. W. Chern, “A torsion sensor made of a corrugated long period fibre grating,” Meas. Sci. Technol. 12, 793–799 (2001). [CrossRef]
  15. R. Falciai, A. G. Mignani, A. Vannini, “Long period gratings as solution concentration sensors,” Sens. Actuators B 74, 74–77 (2001). [CrossRef]
  16. H. J. Patrick, A. D. Kersey, F. Bucholtz, “Analysis of the response of long period fiber gratings to external index of refraction,” J. Lightwave Technol. 16, 1606–1612 (1998). [CrossRef]
  17. K. Goswami, J. Prohaska, A. Menon, E. Mendoza, R. Lieberman, “Evanescent wave sensor for detecting volatile organic compounds,” in Chemical, Biochemical, and Environmental Fiber Sensors X, Proc. SPIE3540, 115–122 (1998). [CrossRef]
  18. J. A. Greene, M. E. Jones, T. A. Tran, K. A. Murphy, P. M. Schindler, V. Bhatia, R. G. May, D. Sherrer, R. O. Claus, “Grating-based optical fiber-based corrosion sensors,” in Smart Sensing Processing and Instrumentation, Proc. SPIE2718, 170–174 (1996).
  19. J. Elster, J. Greene, M. Jones, T. Bailey, S. Lenahan, W. Velander, R. Van Tassel, W. Hodges, “Optical fiber-based chemical sensors for detection of corrosion precursors and byproducts,” in Chemical, Biochemical, and Environmental Fiber Sensors X, Proc. SPIE3540, 251–257 (1998). [CrossRef]
  20. X. Shu, D. Huang, “Highly sensitive chemical sensor based on the measurement of the separation of dual resonant peaks in a 100-μm-period fiber grating,” Opt. Commun. 171, 65–69 (1999). [CrossRef]
  21. T. Allsop, L. Zhang, I. Bennion, “Detection of organic aromatic compounds in paraffin by a long-period fiber grating optical sensor with optimized sensitivity,” Opt. Commun. 191, 181–190 (2001). [CrossRef]
  22. T. A. Tran, V. Bhatia, T. D’Alberto, K. A. Murphy, R. O. Claus, “Real-time immunoassays using fiber-optic long-period grating sensors,” in Biomedical Sensing, Imaging, and Tracking Technologies I, Proc. SPIE2676, 165–170 (1996). [CrossRef]
  23. D. Appell, “Fiber sensing—clad fiber detects biological agents fast,” Laser Focus World 34, 26–27 (1998).
  24. D. C. Harris, Quantitative Chemical Analysis,6th ed. (Freeman, San Francisco, Calif., 2003).
  25. J. H. Espenson, Chemical Kinetics and Reaction Mechanisms, 2nd ed. (McGraw-Hill, New York, 1995).
  26. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications (Wiley, New York, 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited