OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 6 — Feb. 20, 2005
  • pp: 1084–1091

Trace detection of explosives with low vapor emissions by laser surface photofragmentation–fragment detection spectroscopy with an improved ionization probe

Jerry Cabalo and Rosario Sausa  »View Author Affiliations


Applied Optics, Vol. 44, Issue 6, pp. 1084-1091 (2005)
http://dx.doi.org/10.1364/AO.44.001084


View Full Text Article

Enhanced HTML    Acrobat PDF (699 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Trace explosive residues are measured in real time by surface laser photofragmentation–fragment detection (SPF–FD) spectroscopy at ambient conditions. A 248-nm laser photofragments the target residue on a substrate, and a 226-nm laser ionizes the resulting NO fragment by resonance-enhanced multiphoton ionization by means of its AX (0, 0) transitions near 226 nm. We tested two probes on selected explosives and modeled their electric field in the presence of a substrate with an ion optics simulation program. The limits of detection range from 1 to 15 ng/cm2 (signal-to-noise ratio of 3) at 1 atm and 298 K and depend on the electrode orientation and mechanism for NO formation.

© 2005 Optical Society of America

OCIS Codes
(140.3450) Lasers and laser optics : Laser-induced chemistry
(280.3420) Remote sensing and sensors : Laser sensors
(300.0300) Spectroscopy : Spectroscopy
(300.6360) Spectroscopy : Spectroscopy, laser
(300.6410) Spectroscopy : Spectroscopy, multiphoton

History
Original Manuscript: May 7, 2004
Manuscript Accepted: August 17, 2004
Published: February 20, 2005

Citation
Jerry Cabalo and Rosario Sausa, "Trace detection of explosives with low vapor emissions by laser surface photofragmentation–fragment detection spectroscopy with an improved ionization probe," Appl. Opt. 44, 1084-1091 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-6-1084


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. D. Usachev, T. S. Miller, J. P. Singh, F. Y. Yueh, P. R. Jang, D. L. Monts, “Optical properties of gaseous 2,4,6-trinitrotoluene in the ultraviolet region,” Appl. Spectrosc. 55, 125–129 (2001). [CrossRef]
  2. M. Todd, R. Provencal, T. Owano, B. Paldus, A. Kachanov, K. Vodopyanov, M. Hunter, S. Coy, J. Steinfeld, J. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6–8 3m) optical parametric oscillator,” Appl. Phys. B 75, 367–376 (2002). [CrossRef]
  3. G. M. Boudreaux, T. S. Miller, A. J. Kunefke, J. P. Singh, F. Yueh, D. Monts, “Development of a photofragmentation laser-induced-fluorescence laser sensor for detection of 2,4,6-trinitrotoluene in soil and groundwater,” Appl. Opt. 38, 1411–1417 (1999). [CrossRef]
  4. D. Heflinger, T. Arusi-Parpar, Y. Ron, R. Lavi, “Application of a unique scheme for remote detection of explosives,” Opt. Commun. 204, 327–331 (2002). [CrossRef]
  5. T. Arusi-Parpar, D. Heflinger, R. Lavi, “Photodissociation followed by laser-induced fluorescence at atmospheric pressure and 24 °C: a unique scheme for remote detection of explosives,” Appl. Opt. 40, 6677–6681 (2001). [CrossRef]
  6. V. Swayambunathan, G. Singh, R. Sausa, “Laser photofragmentation–fragment detection and pyrolysis laser-induced fluorescence studies on energetic materials,” Appl. Opt. 38, 6447–6454 (1999). [CrossRef]
  7. V. Swayambunathan, R. Sausa, G. Singh, “Investigations into trace detection of nitrocompounds by one- and two-color laser photofragmentation/fragment detection spectrometry,” Appl. Spectrosc. 54, 651–658 (2000). [CrossRef]
  8. B. C. Dionne, D. P. Rounbehler, E. K. Achter, J. R. Hobbs, D. H. Fine, “Vapor pressure of explosives,” J. Energetic Mater. 4, 447–472 (1986), and references therein. [CrossRef]
  9. R. B. Cundal, T. F. Frank, C. Colin, “Vapor pressure measurements of some organic high explosives,” J. Chem. Soc. Faraday Trans. 1 74, 1339–1345 (1978). [CrossRef]
  10. J. M. Rosen, C. Dickinson, “Vapor pressures and heats of sublimation of some high melting organic explosives,” J. Chem. Eng. Data 14, 120–124 (1969). [CrossRef]
  11. References 8–10 report the vapor pressure of HMX, RDX, and TNT. The vapor pressure of CL20 is not reported in the open literature: It is probably much less than that of RDX at room temperature based on its molecular structure.
  12. T. B. Tang, M. M. Chaudhri, C. S. Rees, S. J. Mullock, “Decomposition of solid explosives by laser irradiation—a mass-spectrometric study,” J. Mater. Sci. 22, 1037–1044 (1987). [CrossRef]
  13. J. T. Dickinson, L. C. Jensen, D. L. Doering, R. Lee, “Mass-spectroscopy study of products from exposure of cyclotrimethylene trinitramine single-crystals to KrF excimer laser-radiation,” J. Appl. Phys. 67, 3641–3651 (1990). [CrossRef]
  14. J. Cabalo, R. Sausa, “Detection of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by laser surface photofragmentation-fragment detection spectroscopy,” Appl. Spectrosc. 57, 1196–1199 (2003), and references therein. [CrossRef] [PubMed]
  15. simion is an electrostatic lens analysis and design program developed originally by D. C. McGilvery at Latrobe University, Bundoora, Victoria, Australia (1977). SIMION 7.0 is a PC-based program developed by David Dahl of the Idaho National Engineering and Environmental Laboratory. Additional information can be found at http://www.simion.com/ .
  16. W. A. Schroeder, P. E. Wilcox, K. N. Trueblood, A. O. Dekker, “Ultraviolet and visible absorption spectra in ethyl alcohol: data for certain nitric esters, nitramines, nitroalkylbenzenes, and derivatives of phenol, aniline, urea, carbamic acid, diphenylamine, carbazole, and triphenylamine,” Anal. Chem. 23, 1740–1747 (1951). [CrossRef]
  17. M. J. Kamlet, H. G. Adolph, J. C. Hoffsommer, “Steric enhancement of resonance. I. Absorption spectra of the alkyltrinitrobenzenes,” J. Am. Chem. Soc. 84, 3925–3928 (1962). [CrossRef]
  18. C. J. Wu, L. E. Fried, “Ab initio study of RDX decomposition mechanisms,” J. Phys. Chem. A 101, 8675–8679 (1997). [CrossRef]
  19. M. M. Kuklja, A. B. Kunz, “Electronic structure of molecular crystals containing edge dislocations,” J. Appl. Phys. 89, 4962–4970 (2001). [CrossRef]
  20. D. Chakraborty, R. P. Muller, S. Dasgupta, W. A. Goddard, “Mechanism for unimolecular decomposition of HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocine), an ab initio study,” J. Phys. Chem A 105, 1302–1314 (2001). [CrossRef]
  21. B. Rice, U.S. Army Research Laboratory, AMRSRD-ARL-WM-BD, Aberdeen Proving Ground, Md. (personal communication, 2004). A preliminary density functional theory calculation at the B3LYP/6-31G* level yields a CL20 N—NO2bond strength of 38.6 kcal/mol. The error limit is plus or minus a few kilocalories per mole.
  22. A. C. Gonzalez, C. W. Larson, D. F. McMillen, D. M. Golden, “Mechanism of decomposition of nitroaromatics-laser-powered homogeneous pyrolysis of substituted nitrobenzenes,” J. Phys. Chem. 89, 4809–4814 (1985). [CrossRef]
  23. C. Cheng, T. E. Kirkbridge, D. N. Batchelder, R. J. Lacey, T. G. Sheldon, “In-situ detection and identification of trace explosives by Raman microscopy,” J. Forensic Sci. 40, 31–37 (1995).
  24. Y. Z. He, J. P. Cui, W. G. Mallard, W. Tsang, “Homogeneous gas-phase formation and destruction of anthranil from o-nitrotoluene decomposition,” J. Am. Chem. Soc. 110, 3754–3759 (1988). [CrossRef]
  25. D. G. Patil, T. B. Brill, “Thermal decomposition of energetic materials 53. Kinetics and mechanisms of thermolysis of hexanitrohexazaisowurtzitane,” Combust. Flame 87, 145–151 (1991). [CrossRef]
  26. M. Geetha, U. R. Nair, D. B. Sarwade, G. M. Gore, S. N. Asthana, H. Singh, “Studies on CL20: the most powerful high energy material,” J. Therm. Anal. Cal. 73, 913–922 (2003). [CrossRef]
  27. R. L. Pastel, R. C. Sausa, “Spectral differentiation of trace concentrations of NO2from NO by laser photofragmentation with fragment ionization at 226 and 452 nm: quantitative analysis of N—NO2mixtures,” Appl. Opt. 39, 2487–2495 (2000). [CrossRef]
  28. Y. Oyumi, T. B. Brill, “Thermal-decomposition of energetic materials 3. A high-rate, in situ,FTIR study of the thermolysis of RDX and HMX with pressure and heating rate as variables,” Combust. Flame 62, 213–224 (1985). [CrossRef]
  29. P. E. Gongwer, T. B. Brill, “Thermal decomposition of energetic materials 73. The identity and temperature dependence of ’minor″ products from flash-heated RDX,” Combust. Flame 115, 417–423 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited