OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 6 — Feb. 20, 2005
  • pp: 859–865

Uniform large-area x-ray imaging at 9 keV using a backlit pinhole

Jonathan Workman, James R. Fincke, George A. Kyrala, and Tim Pierce  »View Author Affiliations

Applied Optics, Vol. 44, Issue 6, pp. 859-865 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (1047 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The development and application of point backlighting at high x-ray energies is an essential step in diagnosing radiation-driven experiments. The point-backlighting technique provides uniform backlighter irradiance over a large field of view. This technique circumvents the large laser energy required for area backlighters at energies of 9 keV and above. We present the results of a Zn 9 keV point-backlighter source using the technique of pinhole aperturing to define the source size and hence the resolution. Details of the design and application of this technique to an undriven gold-walled hohlraum are described.

© 2005 Optical Society of America

OCIS Codes
(110.7440) Imaging systems : X-ray imaging
(340.7480) X-ray optics : X-rays, soft x-rays, extreme ultraviolet (EUV)

Original Manuscript: January 29, 2004
Revised Manuscript: June 4, 2004
Manuscript Accepted: November 1, 2004
Published: February 20, 2005

Jonathan Workman, James R. Fincke, George A. Kyrala, and Tim Pierce, "Uniform large-area x-ray imaging at 9 keV using a backlit pinhole," Appl. Opt. 44, 859-865 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. R. Whittock, M. H. Emergy, J. A. Stamper, E. A. McLean, S. P. Obenschain, M. C. Peckerar, “Observation of Rayleigh–Taylor-like structures in a laser-accelerated foil,” Phys. Rev. Lett. 52, 819–822 (1984). [CrossRef]
  2. B. A. Hammel, D. Griswold, O. L. Landen, T. S. Perry, B. A. Remington, P. L. Miller, T. A. Peyser, J. D. Kilkenny, “X-ray radiographic measurements of radiation-driven shock and interface motion in solid density material,” Phys. Fluids B 5, 2259–2264 (1993). [CrossRef]
  3. S. R. Goldman, S. E. Caldwell, M. D. Wilke, D. C. Wilson, C. W. Barnes, W. W. Hsing, N. D. Delamater, G. T. Schappert, J. W. Grove, E. L. Lindman, J. M. Wallace, R. P. Weaver, A. M. Dunne, M. J. Edwards, P. Graham, B. R. Thomas, “Shock structuring due to fabrication joints in targets,” Phys. Plasmas 6, 3327–3344 (1999). [CrossRef]
  4. E. Forster, K. Gabel, I. Uschmann, “X-ray microscopy of laser-produced plasmas with the use of bent crystals,” Laser Part. Beams 9, 135–148 (1991). [CrossRef]
  5. T. A. Pikuz, A. Ya Fanenov, S. A. Pikuz, V. M. Romanova, T. A. Shelkovenko, “Bragg x-ray optics for imaging spectroscopy of plasma microstructures,” J. X-Ray Sci. Technol. 5, 323–340 (1995). [CrossRef]
  6. Y. Aglitskiy, T. Lehecka, S. Obenschain, C. Pawley, C. M. Brown, J. Seely, “X-ray crystal imagers for inertial confinement fusion experiments,” Rev. Sci. Instrum. 70, 530–535 (1999). [CrossRef]
  7. T. Missalla, I. Uschmann, E. Forster, G. Jenke, D. von der Linde, “Monochromatic focusing of subpicosecond x-ray pulses in the keV range,” Rev. Sci. Instrum. 70, 1288–1299 (1999). [CrossRef]
  8. J. A. Koch, O. L. Landen, T. W. Barbee, P. Celliers, L. B. De Silva, S. G. Glendinning, B. A. Hammel, D. H. Kalantar, C. Brown, J. Seely, G. R. Bennett, W. Hsing, “High-energy x-ray microscopy techniques for laser-fusion plasma research at the National Ignition Facility,” Appl. Opt. 37, 1784–1795 (1998). [CrossRef]
  9. D. K. Bradley, O. L. Landen, A. B. Bullock, S. G. Glendinning, R. E. Turner, “Efficient, 1–100-keV x-ray radiography with high spatial and temporal resolution,” Opt. Lett. 27, 134–136 (2002). [CrossRef]
  10. O. L. Landen, D. R. Farley, S. G. Glendinning, L. M. Logony, P. M. Bell, J. A. Koch, F. D. Lee, D. K. Bradley, D. H. Kalantar, C. A. Back, R. E. Turner, “X-ray backlighting for the National Ignition Facility,” Rev. Sci. Instrum. 72, 627–634 (2001). [CrossRef]
  11. S. M. Pollaine, D. K. Braley, O. L. Landen, R. J. Wallace, O. S. Jones, P. A. Amendt, L. J. Suter, R. E. Turner, “National Ignition Facility scale hohlraum asymmetry studies by thin shell radiography,” Phys. Plasmas 8, 2357–2364 (2001). [CrossRef]
  12. A. B. Bullock, O. L. Landen, D. K. Bradley, “10 and 5 μm pinhole-assisted point-projection backlit imaging for the National Ignition Facility,” Rev. Sci. Instrum. 72, 690–693 (2001). [CrossRef]
  13. J. D. Molitoris, M. M. Morin, D. W. Phillion, A. L. Osterheld, R. E. Stewart, S. D. Rothman, “8–11-keV x-ray sources for imaging and absorption experiments,” Rev. Sci. Instrum. 63, 5104–5107 (1992). [CrossRef]
  14. K. S. Budil, T. S. Perry, S. A. Alvarez, D. Hargrove, J. R. Mazuch, A. Nikitin, P. M. Bell, “Point projection radiography with the flexible x-ray imager,” Rev. Sci. Instrum. 68, 796–798 (1997). [CrossRef]
  15. C. L. S. Lewis, J. McGlinchey, “Quasi-monochromatic, projection radiography of dense laser driven spherical targets,” Opt. Commun. 53, 179–186 (1985). [CrossRef]
  16. S. J. Davidson, J. M. Foster, C. C. Smith, K. A. Warburton, S. J. Rose, “Investigation of the opacity of hot, dense aluminum in the region of its K edge,” Appl. Phys. Lett. 52, 847–849 (1988). [CrossRef]
  17. J. Balmer, C. L. S. Lewis, R. E. Corbett, E. Robertson, S. Saadat, D. O’Neill, J. D. Kilkenny, C. A. Back, R. W. Lee, “X-ray absorption spectroscopy of laser-produced plasmas: a study of the experiments and data analysis,” Phys. Rev. A 40, 330–340 (1989). [CrossRef] [PubMed]
  18. D. M. O’Neill, C. L. S. Lewis, D. Neely, S. J. Davidson, S. J. Rose, R. W. Lee, “Characterization of a laser-produced plasma using the technique of point-projection absorption spectroscopy,” Phys. Rev. A 44, 2641–2648 (1991). [CrossRef]
  19. C. A. Back, C. Chenais-Popovics, P. Renaudin, J. P. Geindre, P. Audebert, J. C. Gauthier, “Study of Kα absorption structures in a subcritical-density laser-produced plasma,” Phys. Rev. A 46, 3405–3412 (1992). [CrossRef] [PubMed]
  20. T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, C. P. Verdon, “Initial performance results of the Omega laser system,” Opt. Commun. 133, 495–506 (1997). [CrossRef]
  21. For a more complete study of conversion efficiency, see J. Workman, G. A. Kyrala, “Scaling of x-ray K-shell sources from laser-solid interactions,” in Applications of X Rays Generated from Lasers and Other Bright Sources II, G. A. Kyrala, J. C. Gauthier, eds., Proc. SPIE4504, 168–179 (2001). [CrossRef]
  22. L. N. Koppel, J. D. Eckels, “High resolution x-ray crystal spectrographs,” (Lawrence Livermore National Laboratory, Livermore, Calif., 1977).
  23. Direct Exposure Film (DEF) is an x-ray film produced by Kodak Corporation, Rochester, New York.
  24. B. L. Henke, J. Y. Uejio, G. F. Stone, C. H. Dittmore, F. G. Fujiwara, “High-energy x-ray response of photographic films: models and measurement,” J. Opt. Soc. Am. B 3, 1540–1550 (1986). [CrossRef]
  25. N. G. Alexandropoulos, G. G. Cohen, “Crystals for stellar spectrometers,” Appl. Spectrosc. 28, 155–164 (1974). [CrossRef]
  26. B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission and reflection at E= 50–30, 000 eV, Z= 1-92,” At. Nucl. Data Tables 54, 181–342 (1993). [CrossRef]
  27. W. Priedhorsky, D. Lier, R. Day, D. Gerke, “Hard-X-ray measurements of 10.6-μm laser-irradiated targets,” Phys. Rev. Lett. 47, 1661–1664 (1981). [CrossRef]
  28. The backlighter assembly did strike the detector off-center; however, this is not sufficient to show that the wedge made a significant contribution.
  29. The location of the grid was chosen to reduce debris launched at the detector by the radial expansion of the hohlraum walls.
  30. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995). [CrossRef]
  31. D. Montgomery, Los Alamos National Laboratory, Los Alamos, N.M. 87545 (personal communication, 2004).
  32. S. H. Batha, C. W. Barnes, C. R. Christensen, “Backlighter predictive capability,” Rev. Sci. Instrum. 74, 2174–2177 (2003). [CrossRef]
  33. This ratio is from a calculation that includes the extended source and finite pinhole thickness.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited