OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 7 — Mar. 1, 2005
  • pp: 1191–1199

Double lateral shearing interferometer for the quantitative measurement of tear film topography

Alfredo Dubra, Carl Paterson, and Christopher Dainty  »View Author Affiliations


Applied Optics, Vol. 44, Issue 7, pp. 1191-1199 (2005)
http://dx.doi.org/10.1364/AO.44.001191


View Full Text Article

Enhanced HTML    Acrobat PDF (1203 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A lateral shearing interferometer designed and built for the study of the precorneal tear film topography dynamics and its effect on visual performance is presented. Simple data processing algorithms are discussed and tested on data illustrating different tear topography features: postblink tear undulation, tear breakup, eyelid-produced bumps and ridges, bubbles, and rough precontact lens tear surfaces.

© 2005 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(330.4300) Vision, color, and visual optics : Vision system - noninvasive assessment
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(330.5370) Vision, color, and visual optics : Physiological optics

History
Original Manuscript: July 19, 2004
Revised Manuscript: November 3, 2004
Manuscript Accepted: November 4, 2004
Published: March 1, 2005

Citation
Alfredo Dubra, Carl Paterson, and Christopher Dainty, "Double lateral shearing interferometer for the quantitative measurement of tear film topography," Appl. Opt. 44, 1191-1199 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-7-1191


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Oliveira-Soto, W. N. Charman, “Some possible longer-term ocular changes following excimer laser refractive surgery,” Ophthalmic Physiol. Opt. 22, 274–288 (2002). [CrossRef] [PubMed]
  2. J. Schwiegerling, “Wavefront guided lasik,” Opt. Photon. News 15, 26–29 (2000).
  3. J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997). [CrossRef]
  4. J.-F. Le Gargasson, M. Glanc, P. Léna, “Retinal imaging with adaptive optics,” C. R. Acad. Sci. Paris 2, 1131–1138 (2001).
  5. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamamuchi, D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express8, 631–643 (2001), www.opticsexpress.org . [CrossRef]
  6. I. Iglesias, P. Artal, “High-resolution retinal images obtained by deconvolution from wave-front sensing,” Opt. Lett. 25, 1804–1806 (2000). [CrossRef]
  7. D. Catlin, C. Dainty, “High-resolution imaging of the human retina with a Fourier deconvolution technique,” J. Opt. Soc. Am. A 19, 1515–1523 (2002). [CrossRef]
  8. A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express10, 405–412 (2002), www.opticsexpress.org . [CrossRef]
  9. G. Walsh, W. N. Charman, H. C. Howland, “Objective technique for the determination of monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 1, 987–992 (1984). [CrossRef] [PubMed]
  10. R. H. Webb, C. M. Penney, K. P. Thompson, “Measurement of ocular local wavefront distortion with a spatially resolved refractometer,” Appl. Opt. 31, 3678–3686 (1992). [CrossRef] [PubMed]
  11. R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vision Sci. 74, 540–547 (1997). [CrossRef]
  12. I. Iglesias, E. Berrio, P. Artal, “Estimates of the ocular wave aberration from pairs of double-pass retinal images,” J. Opt. Soc. Am. A 15, 2466–2476 (1998). [CrossRef]
  13. I. Iglesias, R. Ragazzoni, Y. Julien, P. Artal, “Extended source pyramid wave-front sensor for the human eye,” Opt. Express10, 419–428 (2002), www.opticsexpress.org . [CrossRef]
  14. H. S. Smirnov, “Measurement of wave aberration in the human eye,” Biophysics 6, 52–66 (1961).
  15. J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997). [CrossRef]
  16. T. O. Salmon, L. N. Thibos, A. Bradley, “Comparison of the eye’s wave-front aberration measured psycophysically and with the Shack–Hartmann wave-front sensor,” J. Opt. Soc. Am. A 15, 2457–2465 (1998). [CrossRef]
  17. L. Diaz-Santana, Applied Vision Research Centre, Department of Optometry and Visual Science, City University, London, UK (personal communication, 2004).
  18. W. N. Charman, G. Heron, “Fluctuations in accommodation: a review,” Ophthalmic Physiol. Opt. 8, 153–164 (1988). [CrossRef] [PubMed]
  19. L. S. Gray, B. Winn, B. Gilmartin, “Effect of target luminance on microfluctuations of accommodation,” Ophthalmic Physiol. Opt. 13, 258–265 (1993). [CrossRef] [PubMed]
  20. H. Hofer, P. Artal, B. Singer, J. L. Aragón, D. R. Williams, “Dynamics of the eye’s aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001). [CrossRef]
  21. E. Moreno-Barriuso, R. Navarro, “Laser ray tracing versus Hartmann–Shack sensor for measuring optical aberrations in the human eye,” J. Opt. Soc. Am. A 17, 974–985 (2000). [CrossRef]
  22. R. Tutt, A. Bradley, C. Begley, L. N. Thibos, “Optical and visual impact of tear break-up in human eyes,” Invest. Ophthalmol. Visual Sci. 41, 4117–4123 (2000).
  23. L. F. Schmetterer, F. Lexer, C. J. Unfried, H. Sattmann, A. F. Fercher, “Topical measurement of fundus pulsations,” Opt. Eng. 34, 711–716 (1995). [CrossRef]
  24. W. H. Hart, Adler’s Physiology of the Eye: Clinical Application, 9th ed. (Mosby, St. Louis, Mo., 1992).
  25. F. Vargas-Martin, P. M. Prieto, P. Artal, “Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to its performance,” J. Opt. Soc. Am. A 15, 2552–2562 (1998). [CrossRef]
  26. S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115–117 (2002). [CrossRef] [PubMed]
  27. L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, C. Dainty, “Benefit of higher closed-loop bandwidths in ocular adaptive optics,” Opt. Express11, 2597–2605 (2003), www.opticsexpress.org . [CrossRef]
  28. N. L. Himebaugh, A. R. Wright, A. Bradley, C. G. Begley, L. Thibos, “Use of retroillumination to visualize optical aberrations caused by tear film break-up,” Optom. Vision Sci. 80, 69–78 (2003). [CrossRef]
  29. X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, A. Bradley, “Test-retest reliability of clinical Shack–Hartmann measurements,” Invest. Ophthalmol. Visual Sci. 45, 351–360 (2004). [CrossRef]
  30. M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, P. Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Commun. 230, 225–238 (2004). [CrossRef]
  31. T. J. Licznerski, H. T. Kasprzak, W. Kowalik, “Two interference techniques for in vivo assessment of the tear film stability on a cornea and contact lens,” in Tenth Polish–Czech–Slovak Optical Conference: Wave and Quantum Aspects of Contemporary Optics, J. Nowak, M. Zajac, eds., Proc. SPIE3320, 183–186 (1998). [CrossRef]
  32. M. Born, E. Wolf, Principle of Optics, 6th ed. (Pergamon, Oxford, UK, 1980).
  33. M. Takeda, H. Ina, S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982). [CrossRef]
  34. D. C. Ghiglia, M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms and Software (Wiley, New York, 1998).
  35. L. A. Poyneer, D. T. Gavel, J. M. Brase, “Fast wave-front reconstruction in large adaptive optics systems with use of the Fourier transform,” J. Opt. Soc. Am. A 19, 2100–2111 (2002). [CrossRef]
  36. A. Dubra, C. Paterson, J. C. Dainty, “Wave-front reconstruction from shear phase maps by use of the discrete Fourier transform,” Appl. Opt. 43, 1108–1113 (2004). [CrossRef] [PubMed]
  37. A. Dubra, “A shearing interferometer for the evaluation of human tear film topography,” Ph.D. dissertation (Imperial College London, London, 2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited