OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 7 — Mar. 1, 2005
  • pp: 1226–1235

Measuring methane and its isotopes 12CH4, 13CH4, and CH3D on the surface of Mars with in situ laser spectroscopy

Christopher R. Webster  »View Author Affiliations

Applied Optics, Vol. 44, Issue 7, pp. 1226-1235 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (412 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In light of the recent discovery of methane on Mars and its possible biological origin, a strategy is described for making in situ measurements of methane and its isotopes on the surface of Mars by laser spectroscopy in the 3.3-μm wavelength region. An instrument of reasonable mass (~1 lb) and power (few watts) is capable of measuring mixing ratios down to 0.1 part per 109 by volume, a hundred times lower than recently reported observations. Making accurate measurements of 13CH4 and CH3D will be more difficult. For measuring 313C to 10‰ and δD to 50‰, sample preconcentration will be required to ~3 parts per 106 by volume for δ13C and to ~40 parts per 106 by volume for δD. This need would be mitigated by the discovery of larger local abundances of methane near the source regions.

© 2005 Optical Society of America

OCIS Codes
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(010.3920) Atmospheric and oceanic optics : Meteorology
(120.1880) Instrumentation, measurement, and metrology : Detection
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(140.3600) Lasers and laser optics : Lasers, tunable

Original Manuscript: May 4, 2004
Revised Manuscript: October 15, 2004
Manuscript Accepted: October 15, 2004
Published: March 1, 2005

Christopher R. Webster, "Measuring methane and its isotopes 12CH4, 13CH4, and CH3D on the surface of Mars with in situ laser spectroscopy," Appl. Opt. 44, 1226-1235 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. P. McKay, R. L. Mancinelli, C. R. Stoker, R. A. Wharton, “The possibility of life on Mars during a water-rich past,” in Mars, H. H. Kieffer, B. M. Jakowsky, C. Snyder, M. Matthews, eds. (University of Arizona, Tucson, Ariz., 1992), Chap. 35.
  2. H. P. Klein, N. H. Horowitz, K. Beimann, “The search for extant life on Mars,” in Mars, H. H. Kieffer, B. M. Jakowsky, C. Snyder, M. Matthews, eds. (University of Arizona, Tucson, Ariz., 1992), Chap. 34.
  3. K. Horikoshi, W. D. Grant, Extremophiles: Microbial Life in Extreme Environments (Wiley, New York, 1998).
  4. V. A. Krasnopolsky, J. P. Maillard, T. C. Owen, “Detection of methane in the Martian atmosphere: evidence for life?” Icarus (in press).
  5. European Space Agency (ESA), “Mars Express confirms methane in the Martian atmosphere,” news release, 30March2004.
  6. G. J. Taylor, A. Morrison, D. Beaty, “Mars Exploration Program Analysis Group (MEPAG) report: scientific goals, objectives, investigations, and priorities: 2003,” http://mepag.jpl.nasa.gov/reports .
  7. M. E. Summers, B. J. Lieb, E. Chapman, “Atmospheric biomarkers of subsurface life on Mars,” Geophys. Res. Lett.29, doi: (2002). [CrossRef]
  8. D. L. Valentine, A. Chidthaisong, A. Rice, W. S. Reeburgh, S. C. Tyler, “Carbon and isotope fractionation by moderately thermophilic methanogens,” Geochim. Cosmochim. Acta 68, 1571–1590 (2004). [CrossRef]
  9. R. E. Criss, Principles of Stable Isotope Distribution (Oxford U. Press, New York, 1999).
  10. J. E. Ehleringer, R. K. Monson, “Evolutionary and ecological aspects of photosynthetic pathway variations,” Annu. Rev. Ecol. Syst. 24, 411–413 (1993). [CrossRef]
  11. M. Schidlowski, “Isotope fractionations in the terrestrial carbon cycle: a brief overview,” Adv. Space Res. 15, 441–449 (1995). [CrossRef] [PubMed]
  12. M. H. O’Leary, “Carbon isotope fractionation in plants,” Phytochemistry 20, 553–557 (1981). [CrossRef]
  13. G. Brasseur, S. Solomon, Aeronomy of the Middle Atmosphere, 2nd ed. (Reidel, Dortrecht, The Netherlands, 1986). [CrossRef]
  14. Y. L. Yung, W. B. DeMore, Photochemistry of Planetary Atmospheres (Oxford U. Press, New York, 1999).
  15. P. Quay, J. Stutsman, D. Wilbur, A. Snover, E. Dlugokencky, T. Brown, “The isotopic composition of atmospheric methane,” Global Biogeochem. Cycles 13, 445–461 (1999). [CrossRef]
  16. H. Ohmoto, I. J. Valley, H. P. Taylor, J. P. O’Neil, eds., Stable Isotopes in High Temperature Geological Processes, Vol. 16 of Reviews in Mineralogy (Minerology Society of America, Washington, D.C., 1986), pp. 491–560.
  17. J. M. Brooks, W. R. Bryant, B. R. Bernard, N. R. Cameron, “The nature of gas hydrates on the Nigerian continental slope,” presented at the Annals of the New York Academy of Sciences Third International Conference on Gas Hydrates, Park City, Utah, 18–22 July 1999.
  18. D. Sumner, “Microbial influences on local carbon isotopic ratios and their preservation in carbonates,” Astrobiology 1, 57–70 (2001). [CrossRef]
  19. C. R. Webster, A. J. Heymsfield, “Water isotope ratios D/H, 18O/16O, 17O/16O in and out of clouds map dehydration pathways,” Science 302, 1742–1745 (2003). [CrossRef] [PubMed]
  20. T. Owen, “The composition and early history of the atmosphere of Mars,” in Mars, H. H. Kieffer, B. M. Jakowsky, C. Snyder, M. Matthews, eds. (University of Arizona, Tucson, Ariz., 1992), Chap. 25.
  21. P. Bergamaschi, M. Schupp, G. W. Harris, “High-precision, direct measurements of 13CH4/12CH4and 12CH3D/12CH4ratios in atmospheric methane sources by means of a long-path tunable diode laser absorption spectrometer,” Appl. Opt. 33, 7704–7716 (1994). [CrossRef] [PubMed]
  22. P. Bergamaschi, C. A. M. Brenninkmeijer, M. Hahn, T. Rockmann, D. H. Scharffe, P. J. Crutzen, N. F. Elansky, I. B. Belikov, N. B. A. Trivett, D. E. J. Worthy, “Isotope analysis based on source identification for atmospheric CH4and CO sampled across Russia using the Trans-Siberian railroad,” J. Geophys. Res. 103, 8227–8235 (1998). [CrossRef]
  23. P. Bergamaschi, M. Braunlich, T. Marik, C. A. M. Brenninkmeijer, “Measurements of the carbon and hydrogen isotopes of atmospheric methane at Izana, Tenerife: seasonal cycles and synoptic scale variations,” J. Geophys. Res. 105, 14531–14546 (2000). [CrossRef]
  24. C. R. Webster, G. J. Flesch, D. C. Scott, J. Swanson, R. D. May, W. S. Woodward, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Quantum-cascade laser measurements of stratospheric methane and nitrous oxide,” Appl. Opt. 40, 321–326 (2001). [CrossRef]
  25. G. W. Sachse, G. F. Hill, L. O. Wade, M. G. Perry, “Fast-response, high-precision carbon monoxide sensor using a tunable diode laser absorption technique,” J. Geophys. Res. 92, 2071–2081 (1987). [CrossRef]
  26. M. Loewenstein, J. H. Jost, J. Grose, J. Eilers, D. Lynch, S. Jensen, J. Marmie, “Argus: a new instrument for the measurement of stratospheric dynamical tracers N2O and CH4,” Spectrochim. Acta Part A 58, 2329–2349 (2002). [CrossRef]
  27. E. C. Richard, K. K. Kelly, R. H. Winkler, R. Wilson, T. L. Thompson, R. J. McLaughlin, A. L. Schmeltekopf, A. F. Tuck, “A fast-response near-IR tunable diode laser absorption spectrometer for in situ measurements of CH4in the upper troposphere and lower stratosphere,” Appl. Phys. B. 75, 183–194 (2002). [CrossRef]
  28. C. R. Webster, R. T. Menzies, E. D. Hinkley, “Infrared laser absorption: theory and applications,” Laser Remote Chemical Analysis, R. M. Measures, ed. (Wiley, New York, 1988), Chap. 3.
  29. C. R. Webster, R. D. May, “In situ stratospheric measurements of CH4, 13CH4, N2O and OC18O using the BLISS tunable diode laser spectrometer,” Geophys. Res. Lett. 19, 45–48 (1992). [CrossRef]
  30. S.-I. Chou, D. S. Baer, R. K. Hanson, “Diode laser absorption measurements of CH3Cl and CH4near 1.65 μm,” Appl. Opt. 36, 3288–3293 (1997). [CrossRef] [PubMed]
  31. M. Lackner, G. Totschnig, F. Winter, M. Ortsiefer, M.-C. Amann, R. Shau, J. Rosskopf, “Demonstration of methane spectroscopy using a vertical cavity surface emitting laser at 1.68 μm with up to 5 MHz repetition rate,” Meas. Sci. Technol. 14, 101–106 (2003). [CrossRef]
  32. A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Methane concentration and isotopic composition measurements with a mid-IR quantum-cascade laser,” Opt. Lett. 24, 1762–1764 (1999). [CrossRef]
  33. D. G. Lancaster, J. M. Dawes, “Methane detection with a narrow-band source at 3.4 μm based on a Nd:YAG pump laser and a combination of stimulated Raman scattering and difference-frequency mixing,” Appl. Opt. 35, 4041–4045 (1996). [CrossRef] [PubMed]
  34. P. Chen, G. D. Garcia, L. Hollberg, M. Trudeau, P. P. Tans, “A mid-infrared spectrometer for stable-isotope analysis of tropospheric methane,” presented at the American Geophysical Union 2000 Spring Meeting, Washington, D.C., 30 May–3 June 2000.
  35. H. Dahnke, D. Kleine, W. Urban, P. Hering, M. Murtz, “Isotopic ratio measurements of methane in ambient air using mid-IR cavity leak-out spectroscopy,” App. Phys. B. 72, 121–125 (2001). [CrossRef]
  36. C. R. Webster, G. J. Flesch, R. Haberle, J. Bauman, “Mars Laser Hygrometer,” Appl. Opt. 43, 4436–4445 (2004). [CrossRef] [PubMed]
  37. C. M. Stevens, F. E. Rust, “The carbon isotopic composition of atmospheric methane,” J. Geophys. Res. 87, 4879–4882 (1982). [CrossRef]
  38. L. R. Brown, “Methane line parameters from 3700 to 4136 cm−1,” Appl. Opt. 27, 3275–3279 (1988). [CrossRef] [PubMed]
  39. L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003). [CrossRef]
  40. K. Uehara, K. Yamamoto, T. Kikugawa, N. Yoshida, “Isotope analysis of environmental substances by a new laser-spectroscopic method utilizing different pathlengths,” Sens. Actuators B 74, 173–178 (2001). [CrossRef]
  41. J. B. McManus, M. S. Zahniser, D. D. Nelson, L. R. Williams, C. E. Kolb, “Infrared laser spectrometer with balanced absorption for measurement of isotropic ratios of carbon gases,” Spectrochim. Acta 58, 2465–2479 (2002). [CrossRef]
  42. R. D. May, S. F. Forouhar, D. Crisp, W. S. Woodward, D. A. Paige, A. Pathare, W. V. Boynton, “The MVACS tunable diode laser spectrometers,” J. Geophys. Res. 106, 17673–17682 (2001). [CrossRef]
  43. C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D. L. Sivco, A. M. Sergent, A. Y. Cho, “Single mode, tunable distributed-feedback and multiple wavelength quantum cascade lasers,” IEEE J. Quantum Electron. 38, 569–581 (2002). [CrossRef]
  44. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002). [CrossRef] [PubMed]
  45. D. J. Bamford, M. Loewenstein, H. Jost, D. J. Cook, “Spectroscopic detection of methane using a portable room-temperature mid-IR laser source based on guided-wave difference-frequency generation,” in Diode Lasers and Applications in Atmospheric Sensing, A. Fried, ed., Proc. SPIE4817, 188–195 (2002). [CrossRef]
  46. R. Yang, MicroDevices Laboratory, Jet Propulsion Laboratory, Pasadena, Calif.
  47. D. R. Herriott, H. Kogelnik, R. Kompsner, “A scanning spherical mirror interferometer for spectral analysis of laser radiation,” Appl. Opt. 3, 1471–1484 (1964). [CrossRef]
  48. J. B. McManus, P. L. Kebabian, M. S. Zahniser, “Astigmatic mirror multipass absorption cells for long-path-length spectroscopy,” Appl. Opt. 34, 3336–3348 (1995). [CrossRef] [PubMed]
  49. Y. L. Yung, R. R. Friedl, J. P. Pinto, K. D. Bayes, J.-S. Wen, “Kinetic isotopic fractionation and the origin of HDO and CH3D in the solar system,” Icarus 74, 121–132 (1988). [CrossRef]
  50. G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000), and references therein. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited