OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 7 — Mar. 1, 2005
  • pp: 1250–1262

Experimental and theoretical studies of the aureole about a point source that is due to atmospheric scattering in the middle ultraviolet

Claire Lavigne, Antoine Roblin, Patrick Chervet, and Patrick Chazette  »View Author Affiliations


Applied Optics, Vol. 44, Issue 7, pp. 1250-1262 (2005)
http://dx.doi.org/10.1364/AO.44.001250


View Full Text Article

Enhanced HTML    Acrobat PDF (322 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In the atmosphere, pointlike sources are surrounded by aureoles because of molecular and aerosol scattering. In various meteorological conditions, this variance field can be a nonnegligible part of the signal detected by a large-field-of-view sensor. A model based on a Monte Carlo technique has been developed to simulate the propagation of radiation coming from a UV point source. The model was validated with an experimental comparison by a photon-counting technique, and good agreement between experimental and theoretical results was found.

© 2005 Optical Society of America

OCIS Codes
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(030.5260) Coherence and statistical optics : Photon counting
(030.5620) Coherence and statistical optics : Radiative transfer
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(260.7190) Physical optics : Ultraviolet
(290.4210) Scattering : Multiple scattering

History
Original Manuscript: January 23, 2004
Revised Manuscript: October 22, 2004
Manuscript Accepted: October 26, 2004
Published: March 1, 2005

Citation
Claire Lavigne, Antoine Roblin, Patrick Chervet, and Patrick Chazette, "Experimental and theoretical studies of the aureole about a point source that is due to atmospheric scattering in the middle ultraviolet," Appl. Opt. 44, 1250-1262 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-7-1250


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. R. Luettgen, J. H. Shapiro, D. M. Reilly, “Non-line-of-sight single-scatter propagation model,” J. Opt. Soc. Am. A 8, 1964–1972 (1991). [CrossRef]
  2. M. Lindner, S. Elstein, P. Lindner, “Solar blind and bispectral imaging with ICCD, BCCD and EBCCD cameras,” in Image Intensifiers and Applications, C. B. Johnson, T. D. Maclay, F. A. Allahdadi, eds., Proc. SPIE3434, 22–31 (1998).
  3. D. Walker, V. Kumar, K. Mi, P. Sandvik, P. Kung, X. H. Zhang, M. Razeghi, “Solar blind AlGaN photodiodes with very low cutoff wavelength,” Appl. Phys. Lett. 76, 403–405 (2000). [CrossRef]
  4. A. S. Zachor, “Aureole radiance field about a source in a scattering–absorbing medium,” Appl. Opt. 17, 1911–1922 (1978). [CrossRef] [PubMed]
  5. F. Riewe, A. E. S. Green, “Ultraviolet aureole around a source at a finite distance,” Appl. Opt. 17, 1923–1929 (1978). [CrossRef] [PubMed]
  6. R. R. Meier, J. S. Lee, D. E. Anderson, “Atmospheric scattering of middle UV radiation from an internal source,” Appl. Opt. 17, 3216–3225 (1978). [CrossRef] [PubMed]
  7. K. N. Liou, Y. Takano, S. C. Ou, A. Heymsfield, W. Kreiss, “Infrared transmission through cirrus clouds: a radiative model for target detection,” Appl. Opt. 29, 1886–1896 (1990). [CrossRef] [PubMed]
  8. C. Lavigne, A. Roblin, V. Outters, S. Langlois, T. Girasole, C. Rozé, “Comparison of iterative and Monte Carlo methods for calculation of the aureole about a point source in the Earth’s atmosphere,” Appl. Opt. 38, 6237–6246 (1999). [CrossRef]
  9. C. Lavigne, “Etude théorique et expérimentale de la propagation du rayonnement UV dans la basse atmosphère, Ph.D. dissertation (Université de Rouen, Rouen, France, 2001).
  10. A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765–2773 (1995). [CrossRef] [PubMed]
  11. J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, J. Orphal, “Atmospheric remote-sensing reference data from GOME. 1. Temperature-dependent absorption cross-sections of NO2in the 231–7943nm range,” J. Quant. Spectrosc. Radiat. Transfer 60, 1025–1031 (1998). [CrossRef]
  12. J. P. Burrows, A. Richter, A. Dehn, B. Deters, S. Himmelmann, S. Voigt, J. Orphal, “Atmospheric remote-sensing reference data from GOME. 2. Temperature-dependent absorption cross-sections of O3in the 231–794 nm range,” J. Quant. Spectrosc. Radiat. Transfer 61, 509–517 (1999). [CrossRef]
  13. A. C. Vandaele, P. C. Simon, J. M. Guilmot, M. Carleer, R. Colin, “SO2absorption cross-section measurement in the UV using a Fourier transform spectrometer,” J. Geophys. Res.99, 25,599–25,605 (1994). [CrossRef]
  14. A. Jenouvrier, M. F. Mérienne, B. Coquart, M. Carleer, S. Fally, A. C. Vandaele, C. Hermans, R. Colin, “Fourier transform spectroscopy of the O2Herzberg bands. I. Rotational analysis,” J. Mol. Spectrosc. 198, 136–162 (1999). [CrossRef] [PubMed]
  15. M. Hess, P. Koepke, I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998). [CrossRef]
  16. C. Lavigne, P. Chervet, S. Langlois, A. Roblin, “Atmospheric propagation model for calculation of the aureole about a point source,” in Atmospheric Propagation, Adaptive Systems, and Laser Radar Technology for Remote Sensing, J. D. Gonglewski, ed., Proc. SPIE4167, 43–52 (2001). [CrossRef]
  17. C. Lavigne, A. Roblin, S. Langlois, “Solar-blind UV imaging photon detector with automatic gain control,” Meas. Sci. Technol. 13, 713–719 (2002). [CrossRef]
  18. B. A. Bodhaine, N. C. Ahlquist, R. C. Schnell, “Three-wavelength nephelometer suitable for aircraft measurements of background aerosol scattering coefficient,” Atmos. Environ. 10, 2268–2276 (1991).
  19. P. Chazette, “The monsoon aerosol extinction properties at Goa during INDOEX as measured with lidar,” J. Geophys. Res., 108, (2003). [CrossRef]
  20. P. Chazette, C. Liousse, “A case study of optical and chemical ground apportionment for urban aerosols in Thessaloniki,” Atmos. Environ. 35, 2497–2506 (2001). [CrossRef]
  21. A. D. A. Hansen, T. Novakov, “Real time measurements of aerosol black carbon during the carbonaceous species methods comparison study,” Aerosol Sci. Technol. 12, 194–199 (1990). [CrossRef]
  22. J. E. Penner, “Carbonaceous aerosols influencing atmospheric radiation: black and organic carbon,” in Report of the Dahlem Workshop on Aerosol Forcing of Climate, R. J. Charlson, J. Heintzenberg, eds. (Wiley, New York, 1995), pp. 91–108.
  23. H. Cachier, M. P. Brémond, P. Buat-Ménard, “Determination of atmospheric soot carbon with a simple thermal method,” Tellus 41B, 379–390 (1989). [CrossRef]
  24. M. P. Brémond, H. Cachier, P. Buat-Ménard, “Particulate carbon in the Paris region atmosphere,” Environ. Technol. Lett. 10, 339–346 (1989). [CrossRef]
  25. J. Hadji-Lazaro, C. Clerbaux, S. Thiria, “An inversion algorithm using neural networks to retrieve atmospheric CO total columns from high-resolution nadir radiances,” J. Geophys. Res. 104, 23841–23854 (1999). [CrossRef]
  26. E. Volz, “Infrared refractive index of the atmospheric aerosol substances,” Appl. Opt. 11, 755–759 (1972). [CrossRef] [PubMed]
  27. B. N. Holben, T. F. Eck, I. Sluster, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, Z. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterisation,” Remote Sens. Environ. 66, 1–16 (1998). [CrossRef]
  28. P. Chervet, C. Lavigne, A. Roblin, P. Bruscaglioni, “Effects of aerosol scattering phase function on point-spread-function calculations,” Appl. Opt. 41, 6489–6498 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited