OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 7 — Mar. 1, 2005
  • pp: 1270–1282

Small-focus integral fiber lenses: modeling with the segmented beam-propagation method and near-field characterization

Noel Axelrod, Aaron Lewis, Nissim Ben Yosef, Rima Dekhter, Galina Fish, and Alexander Krol  »View Author Affiliations


Applied Optics, Vol. 44, Issue 7, pp. 1270-1282 (2005)
http://dx.doi.org/10.1364/AO.44.001270


View Full Text Article

Enhanced HTML    Acrobat PDF (1058 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Tapered- and straight-core fiber microlenses of hyperbolic shape are studied with the segmented beam propagation method (Se-BPM). This new formulation extends to a large scale the finite-difference time-domain method for calculating propagation of the wave field in guiding systems. It is based on partitioning an entire computational domain into subdomains along the direction of propagation. The Helmholtz equation can be solved directly for each subdomain, and an iterative procedure is used to propagate the field from one subdomain to another. The Se-BPM is compared with other approaches that are commonly used to analyze straight-core fiber microlen devices in the paraxial approximation. We deal mainly with small-spot-size fiber microlenses where this approximation does not apply. We show that the emergent beam is not Gaussian in the far field. Instead of the usual far-field characterization we propose a near-field characterization of the fiber microlens. This is possible with the near-field scanning optical microscopy technique.

© 2005 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2310) Fiber optics and optical communications : Fiber optics
(130.0130) Integrated optics : Integrated optics
(230.7370) Optical devices : Waveguides
(350.5500) Other areas of optics : Propagation

History
Original Manuscript: February 2, 2004
Revised Manuscript: July 20, 2004
Manuscript Accepted: August 3, 2004
Published: March 1, 2005

Citation
Noel Axelrod, Aaron Lewis, Nissim Ben Yosef, Rima Dekhter, Galina Fish, and Alexander Krol, "Small-focus integral fiber lenses: modeling with the segmented beam-propagation method and near-field characterization," Appl. Opt. 44, 1270-1282 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-7-1270


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Kawachi, T. Edahiro, H. Toba, “Microlens formation on VAD single-mode fiber ends,” Electron. Lett. 18, 71–72 (1982). [CrossRef]
  2. G. Eisenstein, D. Vitello, “Chemically etched conical microlenses for coupling single-mode lasers into single-mode fibers,” Appl. Opt. 21, 3470–3474 (1982). [CrossRef] [PubMed]
  3. H. Ghafoorishiraz, T. Asano, “Microlens for coupling a semiconductor laser to a single-mode fiber,” Opt. Lett. 11, 537–539 (1986). [CrossRef]
  4. H. Kuwahara, M. Sasaki, N. Tokoyo, “Efficient coupling from a semiconductor laser into single-mode fibers with tapered hemispherical ends,” Appl. Opt. 19, 2578–2583 (1980). [CrossRef] [PubMed]
  5. H. M. Presby, C. A. Edwards, “Near 100-percent-efficient fiber microlenses,” Electron. Lett. 28, 582–584 (1992). [CrossRef]
  6. H. L. An, “Theoretical investigation on the effective coupling from laser diode to tapered lensed single-mode optical fiber,” Opt. Commun. 181, 89–95 (2000). [CrossRef]
  7. C. W. Barnard, J. W. Y. Lit, “Mode transforming properties of tapered single-mode fiber microlenses,” Appl. Opt. 32, 2090–2094 (1993). [CrossRef] [PubMed]
  8. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983), Chap. 19.
  9. C. A. Edwards, H. M. Presby, C. Dragone, “Ideal microlenses for laser-to-fiber coupling,” J. Lightwave Technol. 11, 252–257 (1993). [CrossRef]
  10. S. Gangopadhyay, S. Sarkar, “ABCD matrix for reflection and refraction of Gaussian light beams at surfaces of hyperboloid of revolution and efficiency computation for the laser diode to single-mode fiber coupling by way of a hyperbolic lens on the fiber tip,” Appl. Opt. 36, 8582–8586 (1997). [CrossRef]
  11. B. Hermansson, D. Yevick, J. Saijonmaa, “Propagating-beam-method analysis of two-dimensional microlenses and three-dimensional taper structures,” J. Opt. Soc. Am. A 1, 663–671 (1984). [CrossRef]
  12. W. Y. Su, G. W. Chern, L. A. Wang, “Analysis of cladding-mode couplings for a lensed fiber integrated with a long-period fiber grating by use of the beam-propagation method,” Appl. Opt. 41, 6576–6584 (2002). [CrossRef] [PubMed]
  13. S. P. Le Blanc, “Characterization of lensed optical fibers for optimal coupling efficiency and assembly yield,” in Technical Proceedings of the National Fiber Optic Engineers Conference 2002, NFOEC 2002, 15–19 September 2002, Dallas, Tex. (IEEE, Piscataway, N.J., 2002), pp. 1084–1094.
  14. H. J. W. M. Hoekstra, “On beam propagation methods for modeling in integrated optics,” Opt. Quantum Electron. 29, 157–171 (1997). [CrossRef]
  15. C. Vassallo, “Reformulation for the beam-propagation method,” J. Opt. Soc. Am. A 10, 2208–2216 (1993). [CrossRef]
  16. A. Lewis, K. Lieberman, N. Ben-Ami, G. Fish, E. Khachatryan, U. Ben-Ami, S. Shalom, “New design and imaging concepts in NSOM,” Ultramicroscopy 61, 215–220 (1995). [CrossRef]
  17. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), p. 81.
  18. J. Van Roey, J. van der Donk, P. E. Lagasse, “Beam-propagation method: analysis and assessment,” J. Opt. Soc. Am. 71, 803–810 (1981). [CrossRef]
  19. M. D. Feit, J. A. Fleck, “Analysis of rib waveguides and couplers by the propagating beam method,” J. Opt. Soc. Am. 71, 803–810 (1981). [CrossRef]
  20. D. Yevick, M. Glasner, “Analysis of forward wide-angle light propagation in semiconductor rib waveguides and integrated-optic structures,” Electron. Lett. 25, 1611–1613 (1989). [CrossRef]
  21. H. H. Lin, A. Korpel, “Heuristic scalar paraxial beam-propagation method taking into account continuous reflections,” J. Opt. Soc. Am. B 8, 849–857 (1991). [CrossRef]
  22. P. Kaczmarski, P. E. Lagasse, “Bidirectional beam propagation method,” Electron. Lett. 26, 675–676 (1988). [CrossRef]
  23. D. Yevick, W. Bardyszewski, B. Hermansson, M. Glasner, “Split-operator electric-field reflection techniques,” IEEE Photon. Lett. 3, 527–529 (1991). [CrossRef]
  24. M. Scalora, M. E. Grenshaw, “A beam propagation method that handles reflections,” Opt. Commun. 108, 191–196 (1994). [CrossRef]
  25. J. Yamauchi, K. Nishio, H. Nakano, “Hybrid numerical technique combining the finite-difference beam-propagation method and the finite-difference time-domain method,” Opt. Lett. 22, 259–261 (1997). [CrossRef] [PubMed]
  26. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), p. 252.
  27. femlab Reference manual, www.femlab.com

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited