OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 7 — Mar. 1, 2005
  • pp: 1305–1314

Ultraviolet Rayleigh–Mie lidar with Mie-scattering correction by Fabry–Perot etalons for temperature profiling of the troposphere

Dengxin Hua, Masaru Uchida, and Takao Kobayashi  »View Author Affiliations


Applied Optics, Vol. 44, Issue 7, pp. 1305-1314 (2005)
http://dx.doi.org/10.1364/AO.44.001305


View Full Text Article

Enhanced HTML    Acrobat PDF (256 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A Rayleigh–Mie-scattering lidar system at an eye-safe 355-nm ultraviolet wavelength that is based on a high-spectral-resolution lidar technique is demonstrated for measuring the vertical temperature profile of the troposphere. Two Rayleigh signals, which determine the atmospheric temperature, are filtered with two Fabry–Perot etalon filters. The filters are located on the same side of the wings of the Rayleigh-scattering spectrum and are optically constructed with a dual-pass optical layout. This configuration achieves a high rejection rate for Mie scattering and reasonable transmission for Rayleigh scattering. The Mie signal is detected with a third Fabry–Perot etalon filter, which is centered at the laser frequency. The filter parameters were optimized by numerical calculation; the results showed a Mie rejection of ~ −45 dB, and Rayleigh transmittance greater than 1% could be achieved for the two Rayleigh channels. A Mie correction method is demonstrated that uses an independent measure of the aerosol scattering to correct the temperature measurements that have been influenced by the aerosols and clouds. Simulations and preliminary experiments have demonstrated that the performance of the dual-pass etalon and Mie correction method is highly effective in practical applications. Simulation results have shown that the temperature errors that are due to noise are less than 1 K up to a height of 4 km for daytime measurement for 300 W m−2 sr−1 μm−1 sky brightness with a lidar system that uses 200 mJ of laser energy, a 3.5-min integration time, and a 25-cm telescope.

© 2005 Optical Society of America

OCIS Codes
(010.7030) Atmospheric and oceanic optics : Troposphere
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.6780) Instrumentation, measurement, and metrology : Temperature
(140.3610) Lasers and laser optics : Lasers, ultraviolet
(280.1100) Remote sensing and sensors : Aerosol detection
(280.3640) Remote sensing and sensors : Lidar

History
Original Manuscript: January 29, 2004
Revised Manuscript: August 22, 2004
Manuscript Accepted: October 26, 2004
Published: March 1, 2005

Citation
Dengxin Hua, Masaru Uchida, and Takao Kobayashi, "Ultraviolet Rayleigh–Mie lidar with Mie-scattering correction by Fabry–Perot etalons for temperature profiling of the troposphere," Appl. Opt. 44, 1305-1314 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-7-1305


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Kobayashi, “Techniques for laser remote sensing of the environment,” Remote Sens. Rev. 3, 1–56 (1987). [CrossRef]
  2. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Krieger, Malabar, Fla., 1992).
  3. A. Hauchecorne, M. L. Chanin, “Density and temperature profiles obtained by lidar between 35 and 70 km,” Geophys. Res. Lett. 7, 565–568 (1980). [CrossRef]
  4. J. E. Kalshoven, C. L. Korb, G. K. Schwemmer, M. Dombrowski, “Laser remote sensing of atmospheric temperature by observing resonant absorption of oxygen,” Appl. Opt. 20, 1967–1971 (1981). [CrossRef] [PubMed]
  5. F. A. Theopold, J. Bösenberg, “Differential absorption lidar measurements of atmospheric temperature profiles: theory and experiment,” J. Atmos. Ocean. Technol. 10, 165–179 (1993). [CrossRef]
  6. G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993). [CrossRef] [PubMed]
  7. N. Nedeljkovic, A. Hauchecorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993). [CrossRef]
  8. A. Behrendt, J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference filter based polychromator,” Appl. Opt. 39, 1372–1378 (2000). [CrossRef]
  9. A. Behrendt, T. Nakamura, M. Onishi, R. Baumgrat, T. Tsuda, “Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient,” Appl. Opt. 41, 7657–7666 (2002). [CrossRef]
  10. G. Fiocco, G. Beneditti-Machelangeli, K. Maschberger, E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nature Physical Sci. 229, 78–79 (1971). [CrossRef]
  11. R. L. Schwiesow, L. Lading, “Temperature profiling by Rayleigh scattering lidar,” Appl. Opt. 20, 1972–1979 (1981). [CrossRef] [PubMed]
  12. H. Shimizu, S. A. Lee, C. Y. She, “High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters,” Appl. Opt. 22, 1373–1381 (1983). [CrossRef] [PubMed]
  13. H. Shimizu, K. Nogachi, C. Y. She, “Atmospheric temperature measurement by a high spectral resolution lidar,” Appl. Opt. 25, 1460–1466 (1986). [CrossRef] [PubMed]
  14. C. Y. She, R. J. Alvarez, L. M. Caldwell, D. A. Krueger, “High spectral resolution Rayleigh-Mie Lidar measurement of aerosol and atmospheric profiles,” Opt. Lett. 17, 541–543 (1992). [CrossRef] [PubMed]
  15. D. A. Krueger, L. M. Caldwell, R. J. Alvarez, C. Y. She, “Self-consistent method for determining vertical profiles of aerosol and atmospheric properties using a high spectral resolution Rayleigh–Mie lidar,” J. Atmos. Oceanic Technol. 10, 533–545 (1993). [CrossRef]
  16. C. A. Tepley, S. I. Sargoytchev, R. Rojas, “The Doppler Rayleigh lidar system at Arecibo,” IEEE Trans. Geosci. Remote Sens. 31, 36–47 (1993). [CrossRef]
  17. Z. Liu, I. Matsui, N. Sugimoto, “High-spectral-resolution lidar using iodine absorption filter for atmospheric measurement,” Opt. Eng. 38, 1661–1670 (1999). [CrossRef]
  18. J. W. Hair, L. M. Caldwell, D. A. Krueger, C. Y. She, “High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles,” Appl. Opt. 40, 5280–5294 (2001). [CrossRef]
  19. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Tauger, J. T. Sroga, F. L. Roesler, J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1. Theory and instrumentation,” Appl. Opt. 22, 3716–3724 (1983). [CrossRef] [PubMed]
  20. P. Piironen, E. W. Eloranta, “Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter,” Opt. Lett. 19, 234–236 (1994). [CrossRef] [PubMed]
  21. Z. S. Liu, D. Wu, J. T. Liu, K. L. Zhang, W. B. Chen, X. Q. Song, J. W. Hair, C. Y. She, “Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with an iodine filter,” Appl. Opt. 41, 7079–7086 (2002). [CrossRef] [PubMed]
  22. D. Hua, M. Uchida, M. Imaki, T. Kobayashi, “UV Rayleigh lidar with Mie scattering intensity correction techniques for measuring atmospheric temperature profiles in the troposphere,” in Lidar Remote Sensing for Industry and Environment Monitoring III, U. N. Singh, T. Itabe, Z. Liu, eds., Proc. SPIE4893, 488–495 (2002). [CrossRef]
  23. G. Tenti, C. D. Boley, R. C. Desai, “On the kinetic model description of Rayleigh–Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).
  24. B. J. Rye, “Molecular backscatter heterodyne lidar: a computational evaluation,” Appl. Opt. 37, 6321–6328 (1998). [CrossRef]
  25. R. H. Kingston, Detection of Optical and Infrared Radiation (Springer-Verlag, Berlin, 1978). [CrossRef]
  26. L. N. Durvasula, R. W. Gammon, “Pressure scanned three-pass Fabry–Perot interferometer,” Appl. Opt. 17, 3298–3303 (1978). [CrossRef] [PubMed]
  27. G. Hernandez, Fabry–Perot Interferometers (Cambridge U. Press, Cambridge, 1988).
  28. R. A. McClatchey, A. P. D’Agati, “Atmospheric transmission of laser radiation: computer code LASER,” , Environment Research Paper 622 (U.S. Air Force Geophysics Laboratory and Air Force Systems Command, Hanscom Air Force Base, Mass., 1978), p. 24.
  29. D. Hua, M. Uchida, T. Kobayashi, “UV high-spectral-resolution Rayleigh–Mie lidar with a dual-pass Fabry–Perot etalon for measuring atmospheric temperature profiles of the troposphere,” Opt. Lett. 29, 1063–1065 (2004). [CrossRef] [PubMed]
  30. D. Hua, M. Uchida, T. Kobayashi, “Ultraviolet Rayleigh–Mie lidar for temperature profiling of the troposphere,” Appl. Opt. 44, 1315–1322 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited