OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 8 — Mar. 10, 2005
  • pp: 1426–1433

Choroidal perfusion measurements made with optical coherence tomography

Frank I. Wu and Matthew R. Glucksberg  »View Author Affiliations

Applied Optics, Vol. 44, Issue 8, pp. 1426-1433 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (623 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Choroidal perfusion measurements are complicated by the choroid’s location posterior to the retina and its associated retinal blood vessels. Optical coherence tomography is a relatively new imaging technique with sufficient spatial resolution to isolate choroidal backscattering events from the posterior eye. We modified a speckle imaging algorithm to analyze sequential axial depth scans obtained from posterior rat eye to obtain an indicator of choroidal perfusion. This indicator is correlated with known changes in choroidal blood flow in response to increased intraocular pressure.

© 2005 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.0110) Medical optics and biotechnology : Imaging systems
(170.1650) Medical optics and biotechnology : Coherence imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.6480) Medical optics and biotechnology : Spectroscopy, speckle

Original Manuscript: April 12, 2004
Manuscript Accepted: June 21, 2004
Published: March 10, 2005

Frank I. Wu and Matthew R. Glucksberg, "Choroidal perfusion measurements made with optical coherence tomography," Appl. Opt. 44, 1426-1433 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. E. Korte, V. Reppucci, P. Henkind, “RPE destruction causes choriocapillary atrophy,” Invest. Ophthalmol. Visual Sci. 25, 1135–1145 (1984).
  2. J. C. Chen, F. W. Fitzke, D. Pauleikhoff, A. C. Bird, “Functional loss in age-related Bruch’s membrane change with choroidal perfusion defect,” Invest. Ophthalmol. Visual Sci. 33, 334–340 (1992).
  3. E. Friedman, S. Krupsky, A. M. Lane, S. S. Oak, E. S. Friedman, K. Egan, E. S. Gragoudas, “Ocular blood flow velocity in age-related macular degeneration,” Ophthalmology 102, 640–646 (1995). [CrossRef] [PubMed]
  4. J. E. Grunwald, S. M. Harprasad, J. DuPont, M. G. Maguire, S. L. Fine, A. J. Brucker, A. M. Maguire, A. C. Ho, “Foveolar choroidal blood flow in age-related macular degeneration,” Invest. Ophthalmol. Visual Sci. 39, 385–390 (1998).
  5. M. Cellini, G. L. Possati, N. Caramazza, R. Caramazza, “Colour Doppler analysis of the choroidal circulation in chronic open-angle glaucoma,” Ophthalmologica 210, 200–202 (1996). [CrossRef] [PubMed]
  6. M. E. Langham, R. Grebe, S. Hopkins, S. Marcus, M. Sebag, “Choroidal blood flow in diabetic retinopathy,” Exp. Eye Res. 52, 167–173 (1991). [CrossRef] [PubMed]
  7. D. A. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  8. M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology 103, 1260–1270 (1996). [CrossRef] [PubMed]
  9. M. R. Hee, C. A. Puliafito, J. S. Duker, E. Reichel, J. G. Coker, J. R. Wilkins, J. S. Schuman, E. A. Swanson, J. G. Fujimoto, “Topography of diabetic macular edema with optical coherence tomography,” Ophthalmology 105, 360–370 (1998). [CrossRef] [PubMed]
  10. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997). [CrossRef] [PubMed]
  11. H. Yabushita, B. E. Bouma, S. L. Houser, H. T. Aretz, I.-K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, D.-H. Kang, E. F. Halpern, G. J. Tearney, “Characterization of human atherosclerosis by optical coherence tomography,” Circulation 106, 1640–1645 (2002). [CrossRef] [PubMed]
  12. X. J. Wang, T. E. Milner, J. S. Nelson, “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Lett. 20, 1337–1339 (1995). [CrossRef] [PubMed]
  13. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22, 1439–1441 (1997). [CrossRef]
  14. Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22, 1119–1121 (1997). [CrossRef] [PubMed]
  15. S. Yazdanfar, A. M. Rollins, J. A. Izatt, “Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography,” Opt. Lett. 25, 1448–1450 (2000). [CrossRef]
  16. S. Yazdanfar, A. M. Rollins, J. A. Izatt, “In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography,” Arch. Ophthalmol. 121, 235–239 (2003). [CrossRef] [PubMed]
  17. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992). [CrossRef] [PubMed]
  18. M. D. Kulkarni, T. G. van Leeuwen, S. Yazdanfar, J. A. Izatt, “Velocity-estimation accuracy and frame-rate limitations in color Doppler optical coherence tomography,” Opt. Lett. 23, 1057–1059 (1998). [CrossRef]
  19. G. J. Tearney, B. E. Bouma, J. G. Fujimoto, “High-speed and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997). [CrossRef]
  20. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ugnarunyawee, J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express3, 219–229 (1998), http://www.opticsexpress.org . [CrossRef] [PubMed]
  21. A. V. Zvyagin, E. D. J. Smith, D. D. Sampson, “Delay and dispersion characteristics of a frequency-domain optical delay line for scanning interferometry,” J. Opt. Soc. Am. A 20, 333–341 (2003). [CrossRef]
  22. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25, 114–116 (2000). [CrossRef]
  23. American National Standards Institute, Safe Use of Lasers, ANSI Z136.1 (Laser Institute of America, Orlando, Fla., 2000).
  24. H. Fujii, K. Nohira, Y. Yamamoto, H. Ikawa, T. Ohura, “Evaluation of blood flow by laser speckle image sensing. 1,” Appl. Opt. 26, 5321–5325 (1987). [CrossRef] [PubMed]
  25. Y. Zhao, Z. Chen, Z. Ding, H. Ren, J. S. Nelson, “Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transformation,” Opt. Lett. 27, 98–100 (2002). [CrossRef]
  26. S. Yazdanfar, A. M. Rollins, J. A. Izatt, “Ultrahigh-velocity resolution imaging of the microcirculation in vivo using color Doppler optical coherence tomography,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications V, V. V. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., Proc. SPIE4251, 156–164 (2001). [CrossRef]
  27. Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett. 18, 1358–1360 (2000). [CrossRef]
  28. D. S. McLeod, G. A. Lutty, “High-resolution histologic analysis of the human choroidal vasculature,” Invest. Ophthalmol. Visual Sci. 35, 3799–3811 (1994).
  29. I. A. Bhutto, T. Amemiya, “Microvascular architecture of the rat choroid: corrosion cast study,” Anat. Rec. 264, 63–71 (2001). [CrossRef] [PubMed]
  30. J. W. Kiel, A. P. Shepherd, “Autoregulation of choroidal blood flow in the rabbit,” Invest. Ophthalmol. Visual Sci. 33, 2399–2410 (1992).
  31. A. Alm, A. Bill, “Ocular and optic nerve blood flow at normal and increased intraocular pressure in monkeys: a study with radioactively labelled microspheres including flow determinations in brain and some other tissues,” Exp. Eye Res. 15, 15–29 (1973). [CrossRef] [PubMed]
  32. D. Y. Yu, V. A. Alder, S. J. Cringle, M. J. Brown, “Chorodial blood flow measured in the dog eye in vivo and in vitro by local hydrogen clearance polarography: validation of a technique and response to raised intracocular pressure,” Exp. Eye Res. 46, 289–303 (1988). [CrossRef] [PubMed]
  33. P. S. Jensen, M. R. Glucksberg, “Regional variation in capillary hemodynamics in the cat retina,” Invest. Ophthalmol. Visual Sci. 39, 407–415 (1998).
  34. R. D. Braun, M. W. Dewhirst, D. L. Hatchell, “Quantification of erythrocyte flow in the choroid of the albino rat,” Am. J. Physiol. 272, H1444–H1453 (1997). [PubMed]
  35. L. F. Schmetterer, F. Lexer, C. J. Unfried, H. Sattmann, A. F. Fercher, “Topical measurements of fundus pulsations,” Opt. Eng. 34, 711–716 (1995). [CrossRef]
  36. Y. Z. Jia, S. Sato, “Evaluation of coronary collateral circulation in early ischemia in rat hearts. A morphological study,” Nippon Ika Daigaku Zasshi 64, 329–336 (1997). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited