OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 8 — Mar. 10, 2005
  • pp: 1434–1441

Experimental results and wear predictions of petal tools that freely rotate

Alberto Cordero-Dávila, Víctor Cabrera-Peláez, Jorge Cuautle-Cortés, Jorge González-García, Carlos Robledo-Sánchez, and Nazario Bautista-Elivar  »View Author Affiliations


Applied Optics, Vol. 44, Issue 8, pp. 1434-1441 (2005)
http://dx.doi.org/10.1364/AO.44.001434


View Full Text Article

Enhanced HTML    Acrobat PDF (1654 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It is difficult to calculate the wear produced by free-pinned tools because their angular movement is not entirely predictable. We analyze the wear produced with free-pinned ring tools, using both simulations and experiments. We conclude that the wear of an incomplete ring is directly proportional to the ring’s angular size, independently of the mean radius of the ring. We present an algorithm for calculation of the wear produced by free-pinned petal tools, as they can be considered a linear combination of incomplete free-pinned ring tools. Finally, we apply this result to the enhancement of a defective flat surface and to making a concave spheric surface.

© 2005 Optical Society of America

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.4610) Optical design and fabrication : Optical fabrication
(220.5450) Optical design and fabrication : Polishing

History
Original Manuscript: May 20, 2004
Revised Manuscript: November 3, 2004
Manuscript Accepted: November 7, 2004
Published: March 10, 2005

Citation
Alberto Cordero-Dávila, Víctor Cabrera-Peláez, Jorge Cuautle-Cortés, Jorge González-García, Carlos Robledo-Sánchez, and Nazario Bautista-Elivar, "Experimental results and wear predictions of petal tools that freely rotate," Appl. Opt. 44, 1434-1441 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-8-1434


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. W. Preston, “The theory and design of plate glass polishing machines,” J. Soc. Glass Technol. 11, 214–256 (1927).
  2. C. C. Dévé, Le travail des Verres d’Optique de Precision, Revue d’Optique Theorique et Instrumentale, Paris, 1936; translated by T. L. Tippel as Optical Workshop Principles (Hilger, London, 1945).
  3. M. N. Golovanova, S. S. Kachkin, Ye. I. Krylova, L. S. Tsesnek, L. I. Shevel’kova, “A method of manufacturing aspherical surfaces which deviate only slightly from the sphere,” Sov. J. Opt. Technol. 35, 254–256 (1968).
  4. Yu. K. Lysyannyy, L. S. Tsesnek, “Computation of the contour of a mask tool surface for shaping a concave paraboloid of revolution,” Opt. Technol. 40, 446–448 (1973).
  5. Yu. K. Lysyannyy, L. S. Tsesnek, L. N. Gurevich, L. N. Khokhlenkov, “The shaping of optical surfaces by the successively corrected mask method,” Sov. J. Opt. Technol. 44, 226–227 (1977).
  6. N. J. Brown, “Axisymmetric aspheric lens figuring for the small shop,” Opt. Eng. 15, 424–427 (1976). [CrossRef]
  7. N. J. Brown, “Computationally directed axisymetric aspheric figuring,” Opt. Eng. 17, 602–620 (1978). [CrossRef]
  8. R.-S. Chang, P.-Y. Lee, “Computer simulations of loose abrasive grinding aspherical optical surface by local figuring pitch,” in Advanced Optical Manufacturing and Testing II, V. J. Doherty, ed., Proc. SPIE1531, 312–317 (1991). [CrossRef]
  9. S. I. Vinokur, “Kinetics of generating plane surfaces,” in Generation of Optical Surfaces,K. J. Kumamin, ed. (Focal, London, 1962), pp. 365–418.
  10. R. González-Castillo, L. Venegas-Pérez, J. González-García, A. Parra-Flores, A. Cordero-Dávila, “Análisis cinemático de una máquina pulidora comercial para superficies ópticas,” in Program of the 46th Congreso Nacional de Física de la Sociedad Mexicana de Física, Bull. Soc. Mex. Fis. Suppl.49, 2 (2003).
  11. W. D. Dong, E. S. Putilin, Y. V. Rudin, “Modeling the velocity and trajectory of the relative motion of a zone of a workpiece during surface lapping,” J. Opt. Technol. 70, 573–575 (2003). [CrossRef]
  12. A. Parra-Flores, A. Cordero-Dávila, J. Cuautle-Cortés, C. Robledo-Sánchez, J. González-García, V. Cabrera-Peláez, “Simulación de desgastes en el pulido de superficies con la ecuación de Preston,” in Program of the 46th Congreso Nacional de Física de la Sociedad Mexicana de Física, Bull. Soc. Mex. Fis. Suppl.49, 138 (2003).
  13. A. Cordero-Dávila, J. Gonzalez-Garcia, M. Pedrayes-López, L. A. Aguilar-Chiu, J. Cuautle-Cortés, C. Robledo Sánchez, “Edge effects with the Preston equation for a circular tool and workpiece,” Appl. Opt. 43, 1250–1254 (2004). [CrossRef] [PubMed]
  14. M. V. Mantravadi, “Newton, Fizeau, and Haidinger interferometers,” in Optical Shop Testing, D. Malacara, ed. (Wiley, New York, 1992), pp. 1–50.
  15. N. R. Draper, H. Smith, Applied Regression Analysis,3rd ed., Wiley Series in Probability and Statistics (Wiley, New York, 1995), pp. 80–83.
  16. A. Bermúdez-López, A. Cordero-Dávila, J. Cuautle-Cortés, “Diseño para la construcción de Herramienta de Pétalo aplicada al pulido de superficies ópticas,” in Program of 46th Congreso Nacional de Física de la Sociedad Mexicana de Física, Bull. Soc. Mex. Fis. Suppl.49, 39 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited