OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 8 — Mar. 10, 2005
  • pp: 1491–1502

Combustion exhaust measurements of nitric oxide with an ultraviolet diode-laser-based absorption sensor

Thomas N. Anderson, Robert P. Lucht, Rodolfo Barron-Jimenez, Sherif F. Hanna, Jerald A. Caton, Thomas Walther, Sukesh Roy, Michael S. Brown, James R. Gord, Ian Critchley, and Luis Flamand  »View Author Affiliations


Applied Optics, Vol. 44, Issue 8, pp. 1491-1502 (2005)
http://dx.doi.org/10.1364/AO.44.001491


View Full Text Article

Enhanced HTML    Acrobat PDF (1081 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A diode-laser-based sensor has been developed for ultraviolet absorption measurements of the nitric oxide (NO) molecule. The sensor is based on the sum-frequency mixing (SFM) of the output of a tunable, 395-nm external-cavity diode laser and a 532-nm diode-pumped, frequency-doubled Nd:YAG laser in a β-barium borate crystal. The SFM process generates 325 ± 75 nW of ultraviolet radiation at 226.8 nm, corresponding to the (v′ = 0, v″ = 0) band of the A2+X2Π electronic transition of NO. Results from initial laboratory experiments in a gas cell are briefly discussed, followed by results from field demonstrations of the sensor for measurements in the exhaust streams of a gas turbine engine and a well-stirred reactor. It is demonstrated that the sensor is capable of fully resolving the absorption spectrum and accurately measuring the NO concentration in actual combustion environments. Absorption is clearly visible in the gas turbine exhaust even for the lowest concentrations of 9 parts per million (ppm) for idle conditions and for a path length of 0.51 m. The sensitivity of the current system is estimated at 0.23%, which corresponds to a detection limit of 0.8 ppm in 1 m for 1000 K gas. The estimated uncertainty in the absolute concentrations that we obtained using the sensor is 10%.

© 2005 Optical Society of America

OCIS Codes
(010.1120) Atmospheric and oceanic optics : Air pollution monitoring
(280.1740) Remote sensing and sensors : Combustion diagnostics
(280.3420) Remote sensing and sensors : Laser sensors
(300.1030) Spectroscopy : Absorption
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6540) Spectroscopy : Spectroscopy, ultraviolet

History
Original Manuscript: April 5, 2004
Manuscript Accepted: September 9, 2004
Published: March 10, 2005

Citation
Thomas N. Anderson, Robert P. Lucht, Rodolfo Barron-Jimenez, Sherif F. Hanna, Jerald A. Caton, Thomas Walther, Sukesh Roy, Michael S. Brown, James R. Gord, Ian Critchley, and Luis Flamand, "Combustion exhaust measurements of nitric oxide with an ultraviolet diode-laser-based absorption sensor," Appl. Opt. 44, 1491-1502 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-8-1491


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998). [CrossRef]
  2. E. R. Furlong, R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, “Diode-laser sensors for real-time control of pulsed combustion systems,” AIAA J. 37, 732–737 (1999). [CrossRef]
  3. N. Docquier, S. Candel, “Combustion control and sensors: a review,” Prog. Energy Combust. Sci. 28, 107–150 (2002). [CrossRef]
  4. S. F. Hanna, R. Barron-Jimenez, T. N. Anderson, R. P. Lucht, J. A. Caton, T. Walther, “Diode-laser-based ultraviolet absorption sensor for nitric oxide,” Appl. Phys. B 75, 113–117 (2002). [CrossRef]
  5. U.S. Environmental Protection Agency, “National air quality and emission trends report, 1998,” (U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, N.C., 2001).
  6. W. J. Kessler, D. M. Sonnenfroh, B. L. Upschulte, M. G. Allen, “Near-IR diode lasers for in-situ measurements of combustor and aeroengine emissions,” paper AIAA-97-2706, presented at the 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Seattle, Wash., 6–9 July 1997 (American Institute of Aeronautics and Astronautics, Reston, Va., 1997).
  7. D. M. Sonnenfroh, M. G. Allen, “Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8-μm room-temperature diode laser,” Appl. Opt. 36, 7970–7977 (1997). [CrossRef]
  8. R. M. Mihalcea, D. S. Baer, R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998). [CrossRef]
  9. M. Snels, C. Corsi, F. D’Amato, M. De Rosa, G. Modugno, “Pressure broadening in the second overtone of NO, measured with a near infrared DFB laser,” Opt. Commun. 159, 80–83 (1999). [CrossRef]
  10. D. B. Oh, A. C. Stanton, “Measurement of nitric oxide with an antimonide diode laser,” Appl. Opt. 36, 3294–3297 (1997). [CrossRef] [PubMed]
  11. P. K. Falcone, R. K. Hanson, C. H. Kruger, “Tunable diode laser absorption measurements of nitric oxide in combustion gases,” Combust. Sci. Technol. 35, 81–99 (1983). [CrossRef]
  12. D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67, 433–441 (1998). [CrossRef]
  13. C. Roller, K. Namjou, J. D. Jeffers, M. Camp, A. Mock, P. J. McCann, J. Grego, “Nitric oxide breath testing by tunable-diode laser absorption spectroscopy: application in monitoring respiratory inflammation,” Appl. Opt. 41, 6018–6029 (2002). [CrossRef] [PubMed]
  14. D. M. Sonnenfroh, W. T. Rawlins, M. G. Allen, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Application of balanced detection to absorption measurements of trace gases with room-temperature, quasi-cw quantum-cascade lasers,” Appl. Opt. 40, 812–820 (2001). [CrossRef]
  15. D. D. Nelson, J. H. Shorter, J. B. McManus, M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350 (2002). [CrossRef]
  16. S. Wehe, M. Allen, L. Xiang, J. Jeffries, R. Hanson, “NO and CO absorption measurements with a mid-IR quantum cascade laser for engine exhaust applications,” paper AIAA-03-0588, presented at the 41st AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nev., 6–9 January 2003 (American Institute of Aeronautics and Astronautics, Reston, Va., 2003).
  17. G. Hancock, V. L. Kasyutich, G. A. D. Ritchie, “Wavelength-modulation spectroscopy using a frequency-doubled current-modulated diode laser,” Appl. Phys. B 74, 569–575 (2002). [CrossRef]
  18. K. A. Peterson, D. B. Oh, “High-sensitivity detection of CH radicals in flames by use of a diode-laser-based near-ultraviolet light source,” Opt. Lett. 24, 667–669 (1999). [CrossRef]
  19. H. R. Barry, B. Bakowski, L. Corner, T. Freegarde, O. T. W. Hawkins, G. Hancock, R. M. J. Jacobs, R. Peverall, G. A. D. Ritchie, “OH detection by absorption of frequency-doubled diode laser radiation at 308 nm,” Chem. Phys. Lett. 319, 125–130 (2000). [CrossRef]
  20. G. J. Ray, T. N. Anderson, J. A. Caton, R. P. Lucht, T. Walther, “OH sensor based on ultraviolet, continuous-wave absorption spectroscopy utilizing a frequency-quadrupled, fiber-amplified external-cavity diode laser,” Opt. Lett. 26, 1870–1872 (2001). [CrossRef]
  21. L. Corner, J. S. Gibb, G. Hancock, A. Hutchinson, V. L. Kasyutich, R. Peverall, G. A. D. Ritchie, “Sum frequency generation at 309 nm using a violet and a near-IR DFB laser for detection of OH,” Appl. Phys. B 74, 441–444 (2002). [CrossRef]
  22. D. B. Oh, “Diode-laser-based sum-frequency generation of tunable wavelength-modulated UV light for OH radical detection,” Opt. Lett. 20, 100–102 (1995). [CrossRef] [PubMed]
  23. J. Alnis, U. Gustafsson, G. Somesfalean, S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett. 76, 1234–1236 (2000). [CrossRef]
  24. J. P. Koplow, D. A. V. Kliner, L. Goldberg, “Development of a narrow-band, tunable, frequency-quadrupled diode laser for UV absorption spectroscopy,” Appl. Opt. 37, 3954–3960 (1998). [CrossRef]
  25. J. W. Blust, D. R. Ballal, G. J. Sturgess, “Fuel effects on lean blowout and emissions from a well-stirred reactor,” J. Propul. Power 15, 216–223 (1999). [CrossRef]
  26. R. P. Lucht, S. Roy, T. A. Reichardt, “Calculation of radiative transition rates for polarized laser radiation,” Prog. Energy Combust. Sci. 29, 115–137 (2003). [CrossRef]
  27. J. Luque, D. R. Crosley, “LIFBASE: Database and Spectral Simulation Program (Version 1.5),” (SRI International, Menlo Park, Calif., 1999), www.sri.com/psd/lifbase .
  28. J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Einstein coefficients for rotational lines of the (0, 0) band of the NO A2∑+–X2Π system,” J. Quant. Spectrosc. Radiat. Transfer 47, 43–54 (1992). [CrossRef]
  29. J. Humlíček, “An efficient method for evaluation of the complex probability function: the Voigt function and its derivatives,” J. Quant. Spectrosc. Radiat. Transfer 21, 309–313 (1979). [CrossRef]
  30. A. Y. Chang, M. D. DiRosa, R. K. Hanson, “Temperature dependence of collision broadening and shift in the NO A←X (0, 0) band in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992). [CrossRef]
  31. P. M. Danehy, E. J. Friedman-Hill, R. P. Lucht, R. L. Farrow, “The effects of collisional quenching on degenerate four-wave mixing,” Appl. Phys. B 57, 243–248 (1993). [CrossRef]
  32. M. F. Zabielski, L. G. Dodge, M. B. Colket, D. J. Seery, “The optical and probe measurement of NO: a comparative study,” in Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1981) pp. 1591–1598. [CrossRef]
  33. M. D. Di Rosa, R. K. Hanson, “Collision broadening and shift of NO γ(0, 0) absorption lines by O2and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994). [CrossRef]
  34. M. D. Di Rosa, R. K. Hanson, “Collision-broadening and -shift of NO γ(0, 0) absorption lines by H2O, O2, and NO at 295 K,” J. Mol. Spectrosc. 164, 97–117 (1994). [CrossRef]
  35. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, Amsterdam, The Netherlands, 1996).
  36. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited