OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 8 — Mar. 10, 2005
  • pp: 1503–1511

Wide-field-of-view GaAs/AlxOy one-dimensional photonic crystal filter

Chyong-Hua Chen, Kevin Tetz, Wataru Nakagawa, and Yeshaiahu Fainman  »View Author Affiliations


Applied Optics, Vol. 44, Issue 8, pp. 1503-1511 (2005)
http://dx.doi.org/10.1364/AO.44.001503


View Full Text Article

Enhanced HTML    Acrobat PDF (307 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The design, fabrication, and characterization of a one-dimensional photonic crystal optical filter that has a relatively narrow, flat-topped passband within a wide stop band and small angular sensitivity is presented. The filter is based on a one-dimensional photonic crystal structure that has multiple defects, facilitating simultaneous minimization of the angular sensitivity and optimization of the passband’s characteristics. We use epitaxially grown and selectively oxidized GaAs/AlxOy multilayers to achieve a high-index-contrast material system and incorporate the experimentally determined optical and material properties into the design of the device. A flat-topped bandpass filter with a bandwidth of 65 nm and a wide field of view of 50° is experimentally characterized and compared with the design predictions.

© 2005 Optical Society of America

OCIS Codes
(230.4170) Optical devices : Multilayers
(310.1860) Thin films : Deposition and fabrication
(310.6860) Thin films : Thin films, optical properties
(350.2460) Other areas of optics : Filters, interference

History
Original Manuscript: July 12, 2004
Revised Manuscript: November 3, 2004
Manuscript Accepted: November 8, 2004
Published: March 10, 2005

Citation
Chyong-Hua Chen, Kevin Tetz, Wataru Nakagawa, and Yeshaiahu Fainman, "Wide-field-of-view GaAs/AlxOy one-dimensional photonic crystal filter," Appl. Opt. 44, 1503-1511 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-8-1503


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Thelen, Design of Optical Interference Coatings (McGraw-Hill, New York, 1989), p. 20.
  2. H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, Philadelphia, Pa., 2001). [CrossRef]
  3. M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287, 2451–2455 (2000). [CrossRef] [PubMed]
  4. J. R. Barry, Wireless Infrared Communications (Kluwer Academic, Boston, Mass., 1994), pp. 17–35.
  5. Y. Fu, N. K. A. Bryan, “Design of hybrid micro-diffractive-refractive optical element with wide field of view for free space optical interconnections,” Opt. Express10, 540–548 (2002), http://www.opticsexpress.org . [CrossRef] [PubMed]
  6. S. Jivkova, M. Kavehrad, “Holographic optical receiver front end for wireless infrared indoor communications,” Appl. Opt. 40, 2828–35 (2001). [CrossRef]
  7. W. Nakagawa, P.-C. Sun, C.-H. Chen, Y. Fainman, “Wide-field-of-view narrow-band spectral filters based on photonic crystal nanocavities,” Opt. Lett. 27, 191–193 (2002). [CrossRef]
  8. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998). [CrossRef] [PubMed]
  9. Y. Park, Y.-G. Roh, C.-O. Cho, H. Jeona, “GaAs-based near-infrared omnidirectional reflector,” Appl. Phys. Lett. 82, 2770–2772 (2003). [CrossRef]
  10. Y. V. Troitski, “Dispersion-free, multiple-beam interferometer,” Appl. Opt. 34, 4717–4722 (1995). [CrossRef] [PubMed]
  11. A. V. Tikhonravov, P. W. Baumeister, K. V. Popov, “Phase properties of multilayers,” Appl. Opt. 36, 4382–4392 (1997). [CrossRef] [PubMed]
  12. See, for example, K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,”IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997), and references therein. [CrossRef]
  13. H. Q. Jia, H. Chen, W. C. Wang, W. X. Wang, W. Li, Q. Huang, J. Zhou, Q. K. Xue, “Improved thermal stability of wet oxidized AlAs,” Appl. Phys. Lett. 80, 974–976 (2002). [CrossRef]
  14. K. J. Knoop, R. P. Mirin, D. H. Christensen, K. A. Bertness, A. Roshko, R. A. Synowicki, “Optical constants of (Al0.98Ga0.02)x Oy native oxides,” Appl. Phys. Lett. 73, 3512–3514 (1998). [CrossRef]
  15. P. Sifkis, P. Paddon, V. Pcradouni, M. Adamcyk, C. Nicoll, A. R. Cowan, T. Tiedje, J. F. Young, “Near-infrared refractive index of thick, laterally oxidized AlGaAs cladding layers,” J. Lightwave Technol. 18, 199–202 (2000). [CrossRef]
  16. D. C. Hall, H. Wu, L. Kou, Y. Lou, R. J. Epstein, O. Blum, H. Hou, “Refractive index and hydroscopic stability of Alx Ga1−x As native oxides,” Appl. Phy. Lett. 75, 1110–1112 (1999). [CrossRef]
  17. S.-K. Cheong, B. A. Bunker, T. Shibata, D. C. Hall, C. B. DeMelo, Y. Luo, G. L. Snider, G. Kramer, N. El-Zein, “Residual arsenic site in oxidized Alx Ga1−x As (x- 0.96),” Appl. Phys. Lett. 78, 2458–2460 (2001). [CrossRef]
  18. P. Heremans, M. Kuijk, R. Windisch, J. Vanderhaegen, H. De Neve, R. Vounckx, G. Borghs, “Angular spectroscopic analysis: an optical characterization technique for laterally oxidized AlGaAs layers,” J. Appl. Phys. 82, 5265–5267 (1997). [CrossRef]
  19. E. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).
  20. D. E. Wohlert, H. C. Lin, K. L. Chang, G. W. Pickrell, J. H. Epple, K. C. Hsieh, K. Y. Chen, “Fabrication of a substrate-independent aluminum oxide-GaAs distributed Bragg reflector,” Appl. Phys. Lett. 75, 1371–1373 (1999). [CrossRef]
  21. Z. Pan, L.-H. Li, Y.-Q. Xu, W. Zhang, Y.-W. Lin, R.-K. Zhang, Y. Zhong, X.-M. Ren, “GaInNAs/GaAs multiple-quantum well resonant-cavity-enhanced photodetectors at 1.3 μm,” Chin. Phys. Lett. 18, 1249–1251 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited