OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 9 — Mar. 21, 2005
  • pp: 1635–1641

GaAs-based multiple-quantum-well spatial light modulators fabricated by a wafer-scale process

Stéphane Junique, Qin Wang, Susanne Almqvist, Jianhua Guo, Henk Martijn, Bertrand Noharet, and Jan Y. Andersson  »View Author Affiliations

Applied Optics, Vol. 44, Issue 9, pp. 1635-1641 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (327 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The design, fabrication, and characterization of large, two-dimensional multiple-quantum-well modulator arrays are presented. Such arrays present a speed advantage compared with competing technologies such as liquid crystals and micromirrors, which are intrinsically limited to the kilohertz range. We discuss the design compromises to reach high-contrast, low-voltage swing optical structures compatible with complementary metal-oxide semiconductor-based integrated circuits and present experimental results. Contrast ratio of 5:1 (limited by the fill factor), variations in uniformity below 1 nm, and frame rates in excess of 10 kHz are demonstrated. Technology maturity for volume production is also discussed.

© 2005 Optical Society of America

Original Manuscript: July 9, 2004
Revised Manuscript: November 22, 2004
Manuscript Accepted: November 22, 2004
Published: March 20, 2005

Stéphane Junique, Qin Wang, Susanne Almqvist, Jianhua Guo, Henk Martijn, Bertrand Noharet, and Jan Y. Andersson, "GaAs-based multiple-quantum-well spatial light modulators fabricated by a wafer-scale process," Appl. Opt. 44, 1635-1641 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Kirsch, B. K. Jones, K. Kang, “Design and evaluation of a multiple quantum well SLM based optical correlator,” in Optical Pattern Recognition XI, D. P. Casasent, T.-H. Chao, eds., Proc. SPIE4043, 66–71 (2000). [CrossRef]
  2. M. J. O’Callaghan, S. H. Pelmutter, B. Wolt, “Single-chip correlator implementation for PCI-bus personal computers,” in Optical Pattern Recognition XI, D. P. Casasent, T.-H. Chao, eds., Proc. SPIE4043, 48–58 (2000). [CrossRef]
  3. U. Arad, E. Redmard, M. Shamay, A. Averboukh, S. Levit, U. Efron, “Development of a large high-performance 2-D array of GaAs/AlGaAs multiple quantum-well modulators,” IEEE Photon. Technol. Lett. 15, 1531–1533 (2003). [CrossRef]
  4. A. G. Kirk, D. V. Plant, T. H. Szymanski, Z. G. Vranesic, F. A. P. Tooley, D. R. Rolston, M. H. Ayliffe, F. K. Lacroix, B. Robertson, E. Bernier, D. F. Brosseau, “Design and implementation of a modulator-based free-space optical backplane for multiprocessor applications,” Appl. Opt. 42, 2465–2481 (2003). [CrossRef] [PubMed]
  5. J. A. Trezza, B. Pezeshki, M. C. Larson, S. M. Lord, J. S. Harris, “High contrast asymetric Fabry–Perot electroabsorption modulator with zero phase change,” Appl. Phys. Lett. 63, 452–454 (1993). [CrossRef]
  6. J. A. Trezza, J. S. Harris, “Creation and optimization of vertical cavity phase flip modulators,” J. Appl. Phys. 75, 4878–4884 (1994). [CrossRef]
  7. B. Noharet, S. Junique, “Multiple quantum well spatial light modulators for correlation-based processors,” in Optoelectronic Information Processing: Optics for Information Systems, P. Réfrégier, B. Javidi, C. Ferreira, S. Vallmitjana, eds. (SPIE, Bellingham, Wash., 2001), pp. 314–364.
  8. R. Spickermann, N. Dagli, M. G. Peters, “GaAs/AlGaAs electro-optic modulator with bandwidth 40 GHz,” Electron. Lett. 31, 915–916 (1995). [CrossRef]
  9. F. Devaux, P. Bordes, A. Ougazzaden, M. Carré, F. Huet, “Experimental optimisation of MQW electroabsorption modulators with up to 40 GHz bandwidths,” Electron. Lett. 30, 1347–1348 (1994). [CrossRef]
  10. Hong Liu, Chien-Chung Lin, J. S. Harris, “High-speed, dual-function vertical cavity multiple quantum well modulators and photodetectors for optical interconnects,” Opt. Eng. 40, 1186–1191 (2001). [CrossRef]
  11. K. W. Goossen, J. A. Walker, L. A. D’Araso, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossive, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995). [CrossRef]
  12. U. Efron, G. Livescu, “Multiple quantum well spatial light modulators,” in Spatial Light Modulator Technology: Materials, Devices, and Applications, U. Efron, ed. (Marcel Dekker, New York, 1994), pp. 217–286.
  13. T. L. Worchesky, K. J. Ritter, R. Martin, B. Lane, “Large array of spatial light modulators hybridized to silicon integrated circuit,” Appl. Opt. 35, 1180–1186 (1996). [CrossRef] [PubMed]
  14. J. A. Trezza, J. S. Powell, C. Garvin, K. Kang, R. Stack, “Creation and application of very large format, high fill factor GaAs-on-CMOS binary and gray scale modulator and emitter arrays,” in Optics in Computing, P. Chavel, D. A. B. Miller, H. Thienpont, eds., Proc. SPIE3490, 78–81 (1998). [CrossRef]
  15. S. Junique, Q. Wang, H. H. Martijn, J. Guo, B. Noharet, J. Borglind, B. Hirschauer, H. Malm, D. Ågren, O. berg, J. Y. Andersson, “Multiple quantum well spatial light modulators: design, fabrication, characterization,” in Spatial Light Modulators: Technology and Applications, U. Efron, ed., Proc. SPIE4457, 62–71 (2001). [CrossRef]
  16. K.-K. Law, J. L. Merz, L. A. Coldren, “Effect of layer thickness variations on the performance of asymetric Fabry–Perot reflection modulators,” J. Appl. Phys. 72, 855–860 (1992). [CrossRef]
  17. H. A. Macleod, Thin-Film Optical Filters (Institute of Physics, Bristol, 2001). [CrossRef]
  18. G. Bastard, E. E. Mendez, L. L. Chang, L. Esaki, “Exciton binding energy in quantum wells,” Phys. Rev. B 26, 1974–1979 (1982). [CrossRef]
  19. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Les Éditions de Physique, Paris, 1988), see in particular pp. 308–317.
  20. Qin Wang, S. Junique, D. Ågren, L. Höglund, O. Öberg, E. Petrini, J. Y. Andersson, H. Malm, J. Borglind, S. Becanovic, “Two-dimensional GaAs/AlGaAs multiple quantum well spatial light modulators,” Acta Opt. Sinica 23, 339–340 (2003).
  21. H. Malm, C. Asplund, S. Becanovic, J. Borgling, A. Parekh, B. Hirschauer, “Advanced process control for high quality R&D and production of MOVPE material by RealTemp,” J. Crystal Growth 248, 229–234 (2003). [CrossRef]
  22. R. Pässler, G. Oelgart, “Appropriate analytical description of the temperature dependence of exciton peak positions in GaAs/Alx Gax−1As multiple quantum wells and the Γ8v–Γ6c gap of GaAs,” J. Appl. Phys. 82, 2611–2616 (1997). [CrossRef]
  23. J. Talghader, J. S. Smith, “Thermal dependence of the refractive index of GaAs and AlAs measured using semiconductor multilayer optical cavities,” Appl. Phys. Lett. 66, 335–337 (1995). [CrossRef]
  24. J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53, R123–R180 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited