OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 9 — Mar. 21, 2005
  • pp: 1698–1703

Bend loss effects in diffused, buried waveguides

James T. A. Carriere, Jesse A. Frantz, Brian R. West, Seppo Honkanen, and Raymond K. Kostuk  »View Author Affiliations

Applied Optics, Vol. 44, Issue 9, pp. 1698-1703 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (565 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Bend loss effects can be a significant concern in the design and performance of diffused, buried waveguide devices. Since diffused, buried waveguides typically do not have analytical mode solutions, the bend mode must be expressed as an expansion of straight waveguide modes. For the case of buried ion-exchanged waveguides, the bend loss is affected by bend radius, the duration of the ion exchange and burial processes, as well as the size of the mask opening used to create the waveguides and applied field during burial. The bend loss effects for each of these variables are explored under typical fabrication conditions.

© 2005 Optical Society of America

Original Manuscript: August 3, 2004
Manuscript Accepted: October 19, 2004
Published: March 20, 2005

James T. A. Carriere, Jesse A. Frantz, Brian R. West, Seppo Honkanen, and Raymond K. Kostuk, "Bend loss effects in diffused, buried waveguides," Appl. Opt. 44, 1698-1703 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J.-S. Gu, P.-A. Besse, H. Melchior, “Method of lines for the analysis of the propagation characteristics of curved optical rib waveguides,” IEEE J. Quantum Electron. 27, 531–537 (1991). [CrossRef]
  2. T. Yamamoto, M. Koshiba, “Numerical analysis of curvature loss in optical waveguides by the finite-element method,” J. Lightwave Technol. 11, 1579–1583 (1993). [CrossRef]
  3. S. Kim, A. Gopinath, “Vector analysis of optical dielectric waveguide bends using finite-difference method,” J. Lightwave Technol. 14, 2085–2092 (1996). [CrossRef]
  4. W.-k. Wang, R. Scotti, D. J. Muehlner, “Phase compensation of bent silica-glass optical channel waveguide devices by vector-wave mode-matching method,” J. Lightwave Technol. 15, 538–545 (1997). [CrossRef]
  5. P. D. Sewell, T. M. Benson, “Efficient curvature analysis of buried waveguides,” J. Lightwave Technol. 18, 1321–1329 (2000). [CrossRef]
  6. W. J. Song, G. H. Song, B. H. Ahn, M. Kang, “Scalar BPM analyses of TE and TM polarized fields in bent waveguides,” IEEE Trans. Antenna Propagat. 51, 1185–1198 (2003). [CrossRef]
  7. D. Dai, S. He, “Analysis of characteristics of bent rib waveguides,” J. Opt. Soc. Am. A 21, 113–121 (2004). [CrossRef]
  8. A. Melloni, F. Carniel, R. Costa, M. Martinelli, “Determination of bend mode characteristics in dielectric waveguides,” J. Lightwave Technol. 19, 571–577 (2001). [CrossRef]
  9. A. Melloni, P. Monguzzi, R. Costa, M. Martinelli, “Design of curved waveguides: the matched bend,” J. Opt. Soc. Am. A 20, 130–137 (2003). [CrossRef]
  10. R. K. Lagu, R. Ramaswamy, “Process and waveguide parameter relationships for the design of planar silver ion-exchanged glass waveguides,” J. Lightwave Technol. LT-4, 176–181 (1986). [CrossRef]
  11. R. V. Ramaswamy, S. I. Najafi, “Planar, buried, ion-exchanged glass waveguides: diffusion characteristics,” IEEE J. Quantum Electron. 22, 883–891 (1986). [CrossRef]
  12. R. V. Ramaswamy, R. Srivastava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol. 6, 984–1002 (1988). [CrossRef]
  13. J. Albert, J. W. Y. Lit, “Full modeling of field-assisted ion exchange for graded index buried channel optical waveguides,” Appl. Opt. 29, 2798–2804 (1990). [CrossRef] [PubMed]
  14. A. Tervonen, “Theoretical analysis of ion-exchanged glass waveguides,” in Introduction to Glass Integrated Optics, S. I. Najafi, ed. (Artech House, Norwood, Mass., 1992), pp. 73–105.
  15. R. G. Walker, C. D. W. Wilkinson, J. A. H. Wilkinson, “Integrated optical waveguiding structures made by silver ion-exchange in glass. 1: The propagation characteristics of stripe ion-exchanged waveguides; a theoretical and experimental investigation,” Appl. Opt. 22, 1923–1928 (1983). [CrossRef] [PubMed]
  16. H. J. Lilienhof, E. Voges, D. Ritter, B. Pantschew, “Field-induced index profiles of multimode ion-exchanged strip waveguides,” IEEE J. Quantum Electron. QE-18, 1877–1883 (1982). [CrossRef]
  17. D. Cheng, J. Saarinen, H. Saarikoski, A. Tervonen, “Simulation of filed-assisted ion exchange for glass channel waveguide fabrication: effect of nonhomogeneous time-dependent electric conductivity,” Opt. Commun. 137, 233–238 (1997). [CrossRef]
  18. J. Hazart, V. Minier, “Concentration profile calculation for buried ion-exchanged channel waveguides in glass using explicit space-charge analysis,” IEEE J. Quantum Electron. 37, 606–612 (2001). [CrossRef]
  19. P. Madasamy, B. R. West, M. M. Morrell, D. F. Geraghty, S. Honkanen, N. Peyghambarian, “Buried ion-exchanged glass waveguides: burial-depth dependence on waveguide width,” Opt. Lett. 28, 1132–1134 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited