OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 9 — Mar. 21, 2005
  • pp: 1735–1747

Effects of a nonuniform vertical profile of chlorophyll concentration on remote-sensing reflectance of the ocean

Malgorzata Stramska and Dariusz Stramski  »View Author Affiliations


Applied Optics, Vol. 44, Issue 9, pp. 1735-1747 (2005)
http://dx.doi.org/10.1364/AO.44.001735


View Full Text Article

Enhanced HTML    Acrobat PDF (319 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Numerical simulations of radiative transfer were used to examine the effects of a nonuniform vertical profile of the inherent optical properties of the water column associated with the vertical profile of chlorophyll concentration, Chl(z), on the spectral remote-sensing reflectance, Rrs(λ), of the ocean. Using the Gaussian function that describes the Chl(z) profile, we simulated a relatively broad range of open-ocean conditions characterized by the presence of a subsurface Chl maximum at depths greater than or equal to 20 m. The simulations for a vertically nonuniform Chl(z) were compared with reference simulations for a homogeneous ocean whose Chl was identical to the surface Chl of inhomogeneous cases. The range of values for the Gaussian parameters that produce significant differences in Rrs(λ) (>5%) was determined. For some vertical structures of Chl(z) considered, the magnitude of Rrs(λ) and the blue-to-green band ratios of Rrs(λ) differ significantly from the reference values of homogeneous ocean (>70% in extreme cases of low surface chlorophyll of 0.02 mg m−3 and shallow pigment maximum at 20 m). The differences are small or negligible when the nonuniform profiles are characterized by a surface Chl greater than 0.4 mg m−3 or a depth of Chl maximum greater than 45 m (65 m in extremely clear waters with a surface Chl of 0.02 mg m−3 or less). The comparison of modeling results with the current algorithm for retrieving the global distribution of chlorophyll from satellite imagery of ocean color suggests that strong effects of the subsurface chlorophyll maximum on reflectance at low surface chlorophyll concentrations can lead to a severalfold overestimation in the algorithm-derived surface chlorophyll. Examples of field data from the Sea of Japan and the north polar Atlantic Ocean are used to illustrate various nonuniform pigment profiles and their effect on the blue-to-green ratio of Rrs(λ).

© 2005 Optical Society of America

History
Original Manuscript: February 18, 2004
Revised Manuscript: October 8, 2004
Manuscript Accepted: October 29, 2004
Published: March 20, 2005

Citation
Malgorzata Stramska and Dariusz Stramski, "Effects of a nonuniform vertical profile of chlorophyll concentration on remote-sensing reflectance of the ocean," Appl. Opt. 44, 1735-1747 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-9-1735

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited