OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 9 — Mar. 21, 2005
  • pp: 1735–1747

Effects of a nonuniform vertical profile of chlorophyll concentration on remote-sensing reflectance of the ocean

Malgorzata Stramska and Dariusz Stramski  »View Author Affiliations


Applied Optics, Vol. 44, Issue 9, pp. 1735-1747 (2005)
http://dx.doi.org/10.1364/AO.44.001735


View Full Text Article

Enhanced HTML    Acrobat PDF (319 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Numerical simulations of radiative transfer were used to examine the effects of a nonuniform vertical profile of the inherent optical properties of the water column associated with the vertical profile of chlorophyll concentration, Chl(z), on the spectral remote-sensing reflectance, Rrs(λ), of the ocean. Using the Gaussian function that describes the Chl(z) profile, we simulated a relatively broad range of open-ocean conditions characterized by the presence of a subsurface Chl maximum at depths greater than or equal to 20 m. The simulations for a vertically nonuniform Chl(z) were compared with reference simulations for a homogeneous ocean whose Chl was identical to the surface Chl of inhomogeneous cases. The range of values for the Gaussian parameters that produce significant differences in Rrs(λ) (>5%) was determined. For some vertical structures of Chl(z) considered, the magnitude of Rrs(λ) and the blue-to-green band ratios of Rrs(λ) differ significantly from the reference values of homogeneous ocean (>70% in extreme cases of low surface chlorophyll of 0.02 mg m−3 and shallow pigment maximum at 20 m). The differences are small or negligible when the nonuniform profiles are characterized by a surface Chl greater than 0.4 mg m−3 or a depth of Chl maximum greater than 45 m (65 m in extremely clear waters with a surface Chl of 0.02 mg m−3 or less). The comparison of modeling results with the current algorithm for retrieving the global distribution of chlorophyll from satellite imagery of ocean color suggests that strong effects of the subsurface chlorophyll maximum on reflectance at low surface chlorophyll concentrations can lead to a severalfold overestimation in the algorithm-derived surface chlorophyll. Examples of field data from the Sea of Japan and the north polar Atlantic Ocean are used to illustrate various nonuniform pigment profiles and their effect on the blue-to-green ratio of Rrs(λ).

© 2005 Optical Society of America

History
Original Manuscript: February 18, 2004
Revised Manuscript: October 8, 2004
Manuscript Accepted: October 29, 2004
Published: March 20, 2005

Citation
Malgorzata Stramska and Dariusz Stramski, "Effects of a nonuniform vertical profile of chlorophyll concentration on remote-sensing reflectance of the ocean," Appl. Opt. 44, 1735-1747 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-9-1735


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. R. Gordon, W. R. McCluney, “Estimation of the depth of sunlight penetration in the sea for remote sensing,” Appl. Opt. 14, 413–416 (1975). [CrossRef] [PubMed]
  2. R. C. Smith, “Remote sensing and depth distribution of ocean chlorophyll,” Mar. Ecol. Prog. Ser. 5, 359–361 (1981). [CrossRef]
  3. H. R. Gordon, O. B. Brown, “Diffuse reflectance of the ocean: some effects of vertical structure,” Appl. Opt. 14, 2892–2895 (1975). [CrossRef] [PubMed]
  4. H. R. Gordon, “Remote sensing of optical properties in continuously stratified waters,” Appl. Opt. 17, 1893–1897 (1978). [CrossRef] [PubMed]
  5. H. R. Gordon, D. K. Clark, “Remote sensing optical properties of a stratified ocean: an improved interpretation,” Appl. Opt. 19, 3428–3430 (1980). [CrossRef] [PubMed]
  6. H. R. Gordon, “Diffuse reflectance of the ocean: influence of nonuniform phytoplankton pigment profile,” Appl. Opt. 31, 2116–2129 (1992). [CrossRef] [PubMed]
  7. A. Morel, L. Prieur, “Analysis of variations in ocean colour,” Limnol. Oceanogr. 22, 709–722 (1977).
  8. H. R. Gordon, A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery—A Review,lecture notes on coastal and estuarine studies (Springer-Verlag, Berlin, 1983). [CrossRef]
  9. J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24,937–24,953 (1998). [CrossRef]
  10. J. E. O’Reilly, S. Maritorena, D. Siegel, M. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. Cota, S. Hooker, C. McClain, K. Carder, F. Muller-Karger, L. Harding, A. Magnuson, D. Phinney, G. Moore, J. Aiken, K. Arrigo, R. Letelier, M. Culver, “Ocean color chlorophyll a algorithms for SeaWiFS, OC2, and OC4: version 4,” in Sea-WiFS Postlaunch Calibrations and Validation Analyses, Part 3, S. B. Hooker, E. R. Firestone, eds., (2000), Vol. 11, pp. 9–23.
  11. D. K. Clark, National Oceanic and Atmospheric Administration, National Environmental Satellite Service, Washington, D.C. 20233 (personal communication, 2003).
  12. S. Sathyendranath, T. Platt, “Remote sensing of ocean chlorophyll: consequence of nonuniform pigment profile,” Appl. Opt. 28, 490–495 (1989). [CrossRef] [PubMed]
  13. J. R. V. Zaneveld, “Remotely sensed reflectance and its dependence on vertical structure: a theoretical derivation,” Appl. Opt. 21, 4146–4150 (1982). [CrossRef] [PubMed]
  14. V. I. Haltrin, “Diffuse reflection coefficient of a stratified sea,” Appl. Opt. 38, 932–936 (1999). [CrossRef]
  15. O. Frette, S. R. Erga, J. J. Stamnes, K. Stamnes, “Optical remote sensing of waters with vertical structure,” Appl. Opt. 40, 1478–1486 (2001). [CrossRef]
  16. C. D. Mobley, Light and Water, Radiative Transfer in Natural Waters (Academic, San Diego, Calif., 1994).
  17. C. D. Mobley, Hydrolight 4.1 User’s Guide (Sequoia Scientific, Mercer Island, Wash., 1999).
  18. R. M. Pope, E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997). [CrossRef]
  19. F. M. Sogandares, E. S. Fry, “Absorption spectrum (340–640 nm) of pure water. I. Photothermal measurements,” Appl. Opt. 36, 8699–8709 (1997). [CrossRef]
  20. L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981). [CrossRef]
  21. A. Morel, “Light and marine photosynthesis: a spectral model with geochemical and climatological implications,” Prog. Oceanogr. 26, 263–306 (1991). [CrossRef]
  22. R. C. Smith, K. Baker, “Optical properties of the clearest natural waters,” Appl. Opt. 20, 177–184 (1981). [CrossRef] [PubMed]
  23. T. J. Petzold, “Volume scattering functions for selected ocean waters,” Tech. Rep. (Scripps Institution of Oceanography, University of California, San Diego, La Jolla, Calif., 1972).
  24. M. R. Lewis, J. J. Cullen, T. Platt, “Phytoplankton and thermal structure of the upper ocean: consequences of nonuniformity in the chlorophyll profile,” J. Geophys. Res. 88, 2565–2570 (1983). [CrossRef]
  25. T. Platt, S. Sathyendranath, C. M. Caverhill, M. R. Lewis, “Ocean primary production and available light: further algorithms for remote sensing,” Deep-Sea Res. 35, 855–879 (1988). [CrossRef]
  26. J. C. Kitchen, J. R. V. Zaneveld, “On the noncorrelation of the vertical structure of light scattering and chlorophyll a in case 1 waters,” J. Geophys. Res. 95, 20,237–20,246 (1990). [CrossRef]
  27. W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. H. Evans, F. E. Hoge, H. R. Gordon, W. M. Balch, R. Letelier, P. J. Minnett, “An overview of MODIS capabilities for ocean Science observations,” IEEE Trans. Geophys. Remote Sens. 36, 1250–1265 (1998). [CrossRef]
  28. J. L. Mueller, R. W. Austin, “Ocean optics protocols for SeaWiFS validation, revision 1,” (1995).
  29. M. Stramska, D. Stramski, R. Hapter, S. Kaczmarek, J. Ston, “Bio-optical relationships and ocean color algorithms for the north polar region of the Atlantic,” J. Geophys. Res. 108(C5), 3143, (2003). [CrossRef]
  30. C. C. Trees, R. R. Bidigare, D. M. Karl, L. Van Heukelem, “Fluorometric chlorophyll a: Sampling, laboratory methods, and data analysis protocols,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 2, G. S. Fargion, J. L. Mueller, eds., (2000), pp. 162–169.
  31. T. Platt, S. Sathyendranath, “Oceanic primary production: estimation by remote sensing at regional and larger scales,” Science 241, 1613–1620 (1988). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited