OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 45, Iss. 1 — Jan. 1, 2006
  • pp: 201–209

Principal component-based radiative transfer model for hyperspectral sensors: theoretical concept

Xu Liu, William L. Smith, Daniel K. Zhou, and Allen Larar  »View Author Affiliations

Applied Optics, Vol. 45, Issue 1, pp. 201-209 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (627 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Modern infrared satellite sensors such as the Atmospheric Infrared Sounder (AIRS), the Cross-Track Infrared Sounder (CrIS), the Tropospheric Emission Spectrometer (TES), the Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS), and the Infrared Atmospheric Sounding Interferometer (IASI) are capable of providing high spatial and spectral resolution infrared spectra. To fully exploit the vast amount of spectral information from these instruments, superfast radiative transfer models are needed. We present a novel radiative transfer model based on principal component analysis. Instead of predicting channel radiance or transmittance spectra directly, the principal component-based radiative transfer model (PCRTM) predicts the principal component (PC) scores of these quantities. This prediction ability leads to significant savings in computational time. The parameterization of the PCRTM model is derived from the properties of PC scores and instrument line-shape functions. The PCRTM is accurate and flexible. Because of its high speed and compressed spectral information format, it has great potential for superfast one-dimensional physical retrieval and for numerical weather prediction large volume radiance data assimilation applications. The model has been successfully developed for the NAST-I and AIRS instruments. The PCRTM model performs monochromatic radiative transfer calculations and is able to include multiple scattering calculations to account for clouds and aerosols.

© 2006 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(010.1320) Atmospheric and oceanic optics : Atmospheric transmittance
(030.5620) Coherence and statistical optics : Radiative transfer
(290.0290) Scattering : Scattering

ToC Category:

Xu Liu, William L. Smith, Daniel K. Zhou, and Allen Larar, "Principal component-based radiative transfer model for hyperspectral sensors: theoretical concept," Appl. Opt. 45, 201-209 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. H. Aumann, M. T. Chahine, C. Gautier, M. D. Goldberg, E. Kalnay, L. M. McMillin, H. Revercomb, P. W. Rosenkranz, W. L. Smith, D. H. Staelin, L. L. Strow, and J. Sussind, "AIRS/AMSU/HSB on Aqua Mission: design, science objectives, data products, and processing system," IEEE Trans Geosci. Remote Sens. 41, 253-264 (2003). [CrossRef]
  2. R. Beer, T. A. Glavich, and D. M. Rider, "Tropospheric emission spectrometer for the Earth Observing System's Aura satellite," Appl. Opt. 40, 2356-2367 (2001). [CrossRef]
  3. X. Liu, J.-L. Moncet, R. Lynch, and H. Snell, "Overview of the CrIMSS (CrIS/ATMS) retrieval algorithm and application to AMSU, NAST-I and AIRS data," in ITSC XIII Proceedings, Sainte Adele, Canada, 29 October 2003-4 November 2003.
  4. W. L. Smith, H. E. Revercomb, and G. E. Bingham, "Geostationary Fourier Transform Spectrometer (GIFTS)--The new millennium earth observing-3 mission," in Proceedings of IRS 2000: Current Problems in Atmospheric Radiation (A. Deepak Publishing, 2001).
  5. TES Level 2 Algorithm Theoretical Basis Document, Vers. 1.16, JPL D-16474, June 27, 2002.
  6. K. W. Bowman, H. M. Worden, and R. Beer, "Instrument line shape modeling and correction for off-axis detectors in Fourier transform spectrometry," Appl. Opt. 39, 3763-3773 (2000). [CrossRef]
  7. S. A. Clough, J. R. Worden, P. D. Brown, M. W. Shepard, C. P. Rinsland, and R. Beer, "Retrieval of tropospheric ozone from simulations of limb spectral radiances as observed from space," J. Geophys. Res. 107, 4589, doi:10.1029/2001JD001307 (2002). [CrossRef]
  8. S. A. Clough, C. P. Rinsland, and P. D. Brown, "Retrieval of tropospheric ozone from simulations of nadir spectral radiances as observed from space," J. Geophys Res. 100, 16579-16593 (1995). [CrossRef]
  9. M. Luo, R. Beer, D. J. Jacob, J. A. Logan, and C. D. Rodgers, "Simulated observation of tropospheric ozone and CO with the Tropospheric Emission Spectrometer (TES) satellite instrument," J. Geophys. Res. 107, doi:10.1029/2001JD000804 (2002).
  10. W. L. Smith, A polynomial representation of carbon dioxide and water vapor transmission. ESSA Technical Report NESC 47 (U.S. Department of Commerce, Environmental Science Services Administration, National Environmental Satellite Center, Washington, DC, 1969).
  11. L. M. McMillin, H. F. Fleming, and M. L. Hill, "Atmospheric transmittance of an absorbing gas 3: A computationally fast and accurate transmittance model for absorbing gases with variable mixing ratios," Appl. Opt. 18, 1600-1606 (1979). [CrossRef] [PubMed]
  12. L. M. McMillin, L. J. Crone, and T. J. Kleespies, "Atmospheric transmittance of an absorbing gas 5: Improvements to the OPTRAN approach," Appl. Opt. 34, 8396-8399 (1995). [CrossRef] [PubMed]
  13. R. Saunders, M. Matricardi, and P. Brunel, "An improved fast radiative transfer model for assimilation of satellite radiance observations," Q. J. R. Meteorol. Soc. 125, 1407-1425 (1999). [CrossRef]
  14. L. M. McMillin and H. E. Fleming, "Atmospheric transmittance of an absorbing gas, a computationally fast and accurate transmittance model for absorbing gases with constant mixing ratios in inhomogeneous atmospheres," Appl. Opt. 15, 358-367 (1976). [CrossRef] [PubMed]
  15. J. Suskind, J. Rosenfield, and D. Reuter, "An accurate radiative transfer model for use in the direct physical inversion of HIRS2 and MSU temperature sounding data," J. Geophys. Res. 88, 8550-8562 (1983). [CrossRef]
  16. J. R. Eyre and H. M. Woolf, "Transmittance of atmospheric gases in the microwave region: a fast model," Appl. Opt. 27, 3244-3249 (1988). [CrossRef] [PubMed]
  17. L. Strow, S. E. Hannon, S. D. Souza-Machado, H. E. Motteler, and D. Tobin, "An overview of the AIRS radiative transfer model," IEEE Trans Geosci. Remote Sens. 41, 379-389 (2003). [CrossRef]
  18. W. J. Wiscombe and J. W. Evans, "Exponential-sum fitting of radiative transmission functions," J. Comput Phys. 24, 416-444 (1997). [CrossRef]
  19. S. A. Tjemkes and J. Schmetz, "Synthetic satellite radiances using the radiance sampling method" J. Geophys. Res. 102, 1807-1818 (1997). [CrossRef]
  20. W. Armbruster and J. Fischer, "Improved method of exponential sum fitting of transmissions to describe the absorption of atmospheric gases," Appl. Opt. 35, 1931-1941 (1996). [CrossRef] [PubMed]
  21. M. F. Gerstell, "Obtaining the cumulative k-distribution of a gas mixture from those of its components," J. Quant. Spectrosc. Radiat. Transfer 49, 15-38 (1993). [CrossRef]
  22. X. Liu, J.-L. Moncet, D. K. Zhou, and W. L. Smith, "A fast and accurate forward model for NAST-I instrument," in Fourier Transform Spectroscopy and Optical Remote Sensing of the Atmosphere, OSA Topical Meetings, Quebec, Canada (2003).
  23. M. Chou, W. Ridgway, and M. Yan, "Parametrizations for water vapor IR radiative transfer in both the middle and lower atmospheres," J. Atmos. Sci. 52, 1159-1167 (1995). [CrossRef]
  24. A. Lacis and V. Oinas, "A description of the correlated k-distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres," J. Geophys. Res. 96, 9027-9063 (1991). [CrossRef]
  25. N. A. Scott, "A direct method of computation of the transmission function of an inhomogeneous gaseous medium-I: Description of the method," J. Quant. Spectrosc. Radiat. Transf 14, 691-704 (1974). [CrossRef]
  26. W. L. Smith, A. M. Larar, D. K. Zhou, C. A. Sisko, J. Li, B. Huang, H. B. Howell, H. E. Revercomb, D. Cousins, M. J. Gazarik, D. Mooney, and S. A. Mango, "NAST-I: results from revolutionary aircraft sounding spectrometer," in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, A. M. Larar, ed., Proc. SPIE 3756, 2-8 (1999). [CrossRef]
  27. R. West, D. Crisp, and L. Chen, "Mapping transformations for broadband atmospheric radiation calculations," J. Quant. Spectrosc. Radiat. Transfer 43, 191-199 (1990). [CrossRef]
  28. R. Goody, R. West, L. Chen, and D. Crisp, "The correlated-k method for radiation calculations in nonhomogeneous atmospheres," J. Quant. Spectrosc. Radiat. Transfer 42, 539-550 (1989). [CrossRef]
  29. E. K. Mlawer, S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, "Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave," J. Geophys. Res. 102, 16663-16682 (1997). [CrossRef]
  30. S. A. Clough, and M. J. Iacono, "Line-by-line calculation of atmospheric fluxes and cooling rates: 2. Application to carbon dioxide, ozone, methane, nitrous oxide and the halocarbons," J. Geophys. Res. 100, 16579-16593 (1995). [CrossRef]
  31. D. P. Edwards and G. L. Francis, "Improvements to the correlated-k radiative transfer method: application to satellite infrared sounding," J. Geophys. Res. 105, 18135-18156 (2000). [CrossRef]
  32. D. P. Kratz, "The correlated-k distribution technique as applied to the AVHRR channels," J. Quant. Spectrosc. Radiat. Transfer 61, 501-517 (1995). [CrossRef]
  33. J.-L. Moncet and G. Uymin, "High spectral resolution infrared radiance modeling using optimal spectral sampling (OSS) method," in ITSC XIII Proceedings, Sainte Adele, Canada, 29 October 2003-4 November 2003.
  34. J.-L. Moncet, X. Liu, R. Helene, H. Snell, S. Zaccheo, R. Lynch, J. Eluszkiewicz, Y. He, G. Uymin, C. Lietzke, J. Hegarty, S. Boukabara, A. Lipton, and J. Pickle, Algorithm Theoretical Basis Document (ATBD) for the Cross Track Infrared Sounder (CrIS) Environmental Data Records (EDR). V1.2.3, (AER Document Released to ITT and Integrated Program Office, 2001).
  35. X. Liu, W. L. Smith, D. K. Zhou, and Allen Larar, "Super fast PC-based radiative transfer model," in Advanced High Spectral Resolution Infrared Observations Workshop (24-26 May 2004), Ravello, Italy.
  36. M. D. Goldberg, Y. Qu, L. M. McMillin, W. Wolf, L. Zhou, and M. Dvakarla, "AIRS near-real-time products and algorithms in support of operational numerical weather prediction," IEEE Trans Geosci. Remote Sens. 41, 302-313 (2003). [CrossRef]
  37. H-L. Huang, and P. Antonelli, "Application of principal component analysis to high-resolution infrared measurement compression and retrieval," J. Appl. Meteorol. 40, 265-388 (2001). [CrossRef]
  38. F. Chevallier, "Sampled databases of 60-level atmospheric profiles from ECMWF analyses," Research Rep. 4 (EUMETSAT/ECMWF SAF Programme, 2001).
  39. L. M. McMillin, M. D. Goldberg, H. Ding, J. Susskind, and C. D. Barnet, "Forward calculation for interferometers: method and validation," Appl. Opt. 37, 3059-3068 (1998). [CrossRef]
  40. C. D. Barnet, J. M. Blaisdell, and J. Susskind, "Practical methods for rapid and accurate computation of interferometric spectra for remote sensing applications," IEEE Trans. Geosci. Remote Sens. 38, 169-182 (2000). [CrossRef]
  41. W. L. Smith, D. K. Zhou, F. W. Harrison, H. E. Revercomb, A. M. Larar, H. L. Huang, and B. Huang, "Hyperspectral remote sensing of atmospheric profiles from satellites and aircraft," in Hyperspectral Remote Sensing of the Land and Atmosphere, W. L. Smith and Y. Yasuoka, eds., Proc. SPIE 4151, 94-102 (2001). [CrossRef]
  42. D. K. Zhou, W. L. Smith, J. Li, H. B. Howell, G. W. Cantwell, A. M. Larar, R. O. Knuteson, D. C. Tobin, H. E. Revercomb, and S. A. Mango, "Thermodynamic product retrieval methodology for NAST-I and validation," Appl. Opt. 41, 6957-6967 (2002). [CrossRef] [PubMed]
  43. J. W. Salisbury and D. M. D'Aria, "Emissivity of terrestrial material in the 8-14 um atmospheric window," Remote Sens. Environ. 42, 83-106 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited