OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 10 — Apr. 1, 2006
  • pp: 2261–2264

Highly tunable large-core single-mode liquid-crystal photonic bandgap fiber

Thomas Tanggaard Alkeskjold, Jesper Lægsgaard, Anders Bjarklev, David Sparre Hermann, Jes Broeng, Jun Li, Sebastian Gauza, and Shin-Tson Wu  »View Author Affiliations


Applied Optics, Vol. 45, Issue 10, pp. 2261-2264 (2006)
http://dx.doi.org/10.1364/AO.45.002261


View Full Text Article

Enhanced HTML    Acrobat PDF (592 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a highly tunable photonic bandgap fiber, which has a large-core diameter of 25 μ m and an effective mode area of 440 μ m 2 . The tunability is achieved by infiltrating the air holes of a photonic crystal fiber with an optimized liquid-crystal mixture having a large temperature gradient of the refractive indices at room temperature. A bandgap tuning sensitivity of 27   nm / ° C is achieved at room temperature. The insertion loss is estimated to be less than 0.5   dB and caused mainly by coupling loss between the index-guided mode and the bandgap-guided mode.

© 2006 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 13, 2005
Revised Manuscript: September 28, 2005
Manuscript Accepted: October 10, 2005

Citation
Thomas Tanggaard Alkeskjold, Jesper Lægsgaard, Anders Bjarklev, David Sparre Hermann, Jes Broeng, Jun Li, Sebastian Gauza, and Shin-Tson Wu, "Highly tunable large-core single-mode liquid-crystal photonic bandgap fiber," Appl. Opt. 45, 2261-2264 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-10-2261


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001). [CrossRef] [PubMed]
  2. C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, "Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber," Opt. Commun. 204, 179-184 (2002). [CrossRef]
  3. F. Du, Y. Q. Lu, and S. T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85, 2181-2183 (2004). [CrossRef]
  4. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic band gap fiber," in Optical Fiber Communication Conference Technical Digest, Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), pp. 466-468.
  5. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11, 2589-2596 (2003). [CrossRef] [PubMed]
  6. M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber", IEEE Photon. Technol. Lett. 17, 819-821 (2005). [CrossRef]
  7. T. T. Alkeskjold, J. Laegsgaard, D. S. Hermann, A. Anawati, J. Broeng, J. Li, S. T. Wu, and A. Bjarklev," All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Express 12, 5857-5871 (2004). [CrossRef] [PubMed]
  8. L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. S. Hermann, A. Anawati, M. D. Nielsen, and P. Bassi, "Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers," Opt. Express 13, 7483-7496 (2005). [CrossRef] [PubMed]
  9. N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, "Application of an ARROW model for designing tunable photonic devices," Opt. Express 12, 1540-1550 (2004). [CrossRef] [PubMed]
  10. J. Laegsgaard, "Gap formation and guided modes in photonic bandgap fibres with high-index rods," J. Opt. A Pure Appl. Opt. 6, 798-804 (2004). [CrossRef]
  11. J. Li, S. Gauza, and S. Wu, "High temperature-gradient refractive index liquid crystals," Opt. Express 12, 2002-2010 (2004). [CrossRef] [PubMed]
  12. N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, A. Petersson, and H. R. Simonsen, "Improved large-mode-area endlessly single-mode photonic crystal fibers," Opt. Lett. 28, 393-395 (2003). [CrossRef] [PubMed]
  13. R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B 48, 8434-8437 (1993). [CrossRef]
  14. R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Erratum: Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B 55, 15942 (1997). [CrossRef]
  15. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opti. Express 8, 173-190 (2001). [CrossRef]
  16. M. Albertsen, J. Lægsgaard, S. E. B. Libori, K. Hougaard, J. Riishede, and A. Bjarklev, "Coupling reducing k-points for photonic crystal fiber calculations," Photonics Nanostruct. 1, 43-54 (2003). [CrossRef]
  17. J. D. Dai and C. K. Jen, "Analysis of cladded uniaxial single-crystal fibers," J. Opt. Soc. Am. A 8, 2021-2025 (1991). [CrossRef]
  18. J. Li and S. T. Wu, "Extended Cauchy equations for the refractive indices of liquid crystals," J. Appl. Phys. 95, 896-901 (2004). [CrossRef]
  19. P. Steinvurzel, B. T. Kuhlmey, T. P. White, M. J. Steel, C. M. de Sterke, and B. J. Eggleton," Long wavelength anti-resonant guidance in high index inclusion microstructured fibers ," Opt. Express 12, 5424-5434 (2004).
  20. J. Li, S. Gauza, and S. T. Wu, "Temperature effect on liquid crystal refractive indices," J. Appl. Phys. 96, 19-24 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited