OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 10 — Apr. 1, 2006
  • pp: 2273–2278

One-dimensional spatial dark soliton-induced channel waveguides in lithium niobate crystal

Peng Zhang, Yanghua Ma, Jianlin Zhao, Dexing Yang, and Honglai Xu  »View Author Affiliations


Applied Optics, Vol. 45, Issue 10, pp. 2273-2278 (2006)
http://dx.doi.org/10.1364/AO.45.002273


View Full Text Article

Enhanced HTML    Acrobat PDF (464 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The anisotropic dependence of the formation of one-dimensional (1-D) spatial dark solitons on the orientation of intensity gradients in lithium niobate crystal is numerically specified. Based on this, we propose an approach to fabricate channel waveguides by employing 1-D spatial dark solitons. By exposure of two 1-D dark solitons with different orientations, channel waveguides can be created. The structures of the channel waveguides can be tuned by adjustment of the widths of the solitons and∕or the angles between the two exposures. A square channel waveguide is experimentally demonstrated in an iron-doped lithium niobate crystal by exposure of two orthogonal 1-D dark solitons in sequence.

© 2006 Optical Society of America

OCIS Codes
(130.3730) Integrated optics : Lithium niobate
(190.5330) Nonlinear optics : Photorefractive optics
(230.7380) Optical devices : Waveguides, channeled

ToC Category:
Nonlinear Optics

History
Original Manuscript: August 10, 2005
Revised Manuscript: September 22, 2005
Manuscript Accepted: September 22, 2005

Citation
Peng Zhang, Yanghua Ma, Jianlin Zhao, Dexing Yang, and Honglai Xu, "One-dimensional spatial dark soliton-induced channel waveguides in lithium niobate crystal," Appl. Opt. 45, 2273-2278 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-10-2273


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. I. Stegeman and M. Segev, "Optical spatial solitons and their interactions: universality and diversity," Science 286, 1518-1523 (1999). [CrossRef] [PubMed]
  2. M. Shih, Z. Chen, M. Mitchell, M. Segev, H. Lee, R. S. Feigelson, and J. P. Wilde, "Waveguides induced by photorefractive screening solitons," J. Opt. Soc. Am. B 14, 3091-3101 (1997). [CrossRef]
  3. S. Liu, G. Zhang, Q. Sun, J. Xu, and G. Zhang, "Waveguides written and stored by photovoltaic dark spatial solitons in LiNbO3:Fe crystals,"Chin. Phys. Lett. 13, 737-740 (1996). [CrossRef]
  4. S. Liu, G. Zhang, G. Tian, Q. Sun, J. Xu, G. Zhang, and T. Yicheng, "(1+1)-Dimensional and (2+1)-dimensional waveguides induced by self-focused dark notches and crosses in LiNbO3:Fe crystal,"Appl. Opt. 36, 8982-8986 (1997). [CrossRef]
  5. E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, "Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,"Appl. Phys. Lett. 85, 2193-2195 (2004). [CrossRef]
  6. Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, "Self-trapping of an optical vortex by use of the bulk photovoltaic effect," Phys. Rev. Lett. 78, 2948-2951 (1997). [CrossRef]
  7. M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, "Observation of dark photovoltaic spatial solitons." Phys. Rev. A 52, 3095-3100 (1995). [CrossRef] [PubMed]
  8. M. Segev, G. C. Valley, M. C. Bashaw, M. Taya, and M. M. Fejer, "Photovoltaic spatial solitons," J. Opt. Soc. Am. B 14, 1772-1781 (1997). [CrossRef]
  9. M. Shih, P. Leach, M. Segev, M. H. Garrett, G. J. Salamo, and G. C. Valley, "Two-dimensional steady-state photorefractive screening solitons," Opt. Lett. 21, 324-326 (1996). [CrossRef] [PubMed]
  10. G. Duree, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, and E. Sharp, "Dimensionality and size of photorefractive spatial solitons," Opt. Lett. 19, 1195-1197 (1994). [CrossRef] [PubMed]
  11. G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. Fejer, and M. C. Bashaw, "Dark and bright photovoltaic spatial solitons," Phys. Rev. A 50, R4457-R4460 (1994). [CrossRef] [PubMed]
  12. J. Liu, "Universal theory of steady-state one-dimensional photorefractive solitons,"Chin. Phys. 10, 1037-1042 (2001). [CrossRef]
  13. W. L. She, K. K. Lee, and W. K. Lee, "Observation of two-dimensional bright photovoltaic spatial solitons," Phys. Rev. Lett. 83, 3182-3185 (1999). [CrossRef]
  14. Z. Chen, M. Mitchell, M. Shih, M. Segev, M. H. Garrett, and G. C. Valley, "Steady-state dark photorefractive screening solitons," Opt. Lett. 21, 629-631 (1996). [CrossRef] [PubMed]
  15. J. Liu and K. Lu, "Screening-photovoltaic spatial solitons in biased photovoltaic photorefractive crystals and their self-deflection," J. Opt. Soc. Am. B 16, 550-555 (1999). [CrossRef]
  16. K. Itoh, O. Matoba, and Y. Ichioka, "Fabrication experiment of photorefractive three-dimensional waveuides in lithium niobate,"Opt. Lett. 19, 652-654 (1994). [CrossRef] [PubMed]
  17. P. Zhang, D. Yang, J. Zhao, K. Su, J. Zhou, B. Li, and D. S. Yang, "Light-induced array of three-dimensional waveguides in lithium niobate by employing two-beam interference field."Chin. Phys. Lett. 21, 1558-1561 (2004). [CrossRef]
  18. K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, "Origin of thermal fixing in photorefractive lithium niobate crystals,"Phys. Rev. B 56, 1225-1235 (1997). [CrossRef]
  19. H. A. Eggert, B. Hecking, and K. Buse, "Electrical fixing in near-stoichiometric lithium niobate crystals," Opt. Lett. 29, 2476-2478 (2004). [CrossRef] [PubMed]
  20. G. A. Swartzlander, Jr., D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, "Spatial dark-soliton stripes and grids in self-defocusing materials," Phys. Rev. Lett. 66, 1583-1586 (1991). [CrossRef] [PubMed]
  21. A. A. Zozulya and D. Z. Anderson, "Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,"Phys. Rev. A 51, 1520-1531 (1995). [CrossRef] [PubMed]
  22. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).
  23. T. A. Maldonado and T. K. Gaylord, "Electrooptic effect calculations: simplified procedure for arbitrary cases," Appl. Opt. 27, 5051-5066 (1988). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited