OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 10 — Apr. 1, 2006
  • pp: 2295–2305

Particle extinction measured at ambient conditions with differential optical absorption spectroscopy. 2. Closure study

Thomas Müller, Detlef Müller, and René Dubois  »View Author Affiliations

Applied Optics, Vol. 45, Issue 10, pp. 2295-2305 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (1377 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Spectral particle extinction coefficients of atmospheric aerosols were measured with, to the best of our knowledge, a newly designed differential optical absorption spectroscopy (DOAS) instrument. A closure study was carried out on the basis of optical and microphysical aerosol properties obtained from nephelometer, particle soot∕absorption photometer, hygroscopic tandem differential mobility analyzer, twin differential mobility particle sizer, aerodynamic particle sizer, and Berner impactors. The data were collected at the urban site of Leipzig during a period of 10 days in March 2000. The performance test also includes a comparison of the optical properties measured with DOAS to particle optical properties calculated with a Mie-scattering code. The computations take into account dry and ambient particle conditions. Under dry particle conditions the linear regression and the correlation coefficient for particle extinction are 0.95 and 0.90, respectively. At ambient conditions these parameters are 0.89 and 0.97, respectively. An inversion algorithm was used to retrieve microphysical particle properties from the extinction coefficients measured with DOAS. We found excellent agreement within the retrieval uncertainties.

© 2006 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(010.1120) Atmospheric and oceanic optics : Air pollution monitoring
(010.1320) Atmospheric and oceanic optics : Atmospheric transmittance

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: November 8, 2004
Revised Manuscript: April 7, 2005
Manuscript Accepted: April 15, 2005

Thomas Müller, Detlef Müller, and René Dubois, "Particle extinction measured at ambient conditions with differential optical absorption spectroscopy. 2. Closure study," Appl. Opt. 45, 2295-2305 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Müller, D. Müller, and R. Dubois, "Particle extinction measured at ambient conditions with differential optical absorption spectroscopy. 1. System setup and characterization," Appl. Opt. 441657-1666 (2005). [CrossRef] [PubMed]
  2. U. Platt, D. Perner, and H. Pätz, "Simultaneous measurement of atmospheric CH2O, O3 and NO2 by differential optical absorption," J. Geophys. Res. 84, 6329-6335 (1979). [CrossRef]
  3. J. Notholt and F. Raes, "Test of in situ measurements of atmospheric aerosols and trace gases by long path transmission spectroscopy," J. Aerosol Sci. 21, 193-196 (1990). [CrossRef]
  4. H. Flentje, R. Dubois, J. Heintzenberg, and H.-J. Karbach, "Retrieval of aerosol properties from boundary layer extinction measurements with a DOAS system," Geophys. Res. Lett. 24, 2019-2022 (1997). [CrossRef]
  5. W. Birmili, F. Stratmann, and A. Wiedensohler, "Design of a DMA-based size spectrometer for a large particle size range and stable operation," J. Aerosol Sci. 30, 549-553 (1999). [CrossRef]
  6. B. Wehner and A. Wiedensohler, "Statistical analysis on a long term study of number size distributions in the urban area," J. Aerosol Sci. 30, 645-646 (1999). [CrossRef]
  7. A. Maßling, A. Wiedensohler, and B. Busch, "Hygroscopic growth of aerosol particles in the southern Atlantic Ocean and Indian Ocean," J. Aerosol Sci. 30, 837-383 (1999). [CrossRef]
  8. A. Berner, C. Lurzer, F. Pohl, O. Preining, and P. Wagner, "The size distribution of the urban aerosol in Vienna," Sci. Total Environ. 13, 245-261 (1979). [CrossRef]
  9. J. Heintzenberg and R. J. Charlson, "Design and applications of the integrating nephelometer: a review," J. Atmos. Ocean. Technol. 13, 987-1000 (1996). [CrossRef]
  10. J. Heintzenberg and G. Erfurt, "Modification of a commercial integrating nephelometer for outdoor measurements," J. Atmos. Ocean. Technol. 17, 1645-1650 (2000). [CrossRef]
  11. T. C. Bond, T. L. Anderson, and D. Campbell, "Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols," Aerosol Sci. Technol. 30, 582-600 (1999). [CrossRef]
  12. H. Wex, C. Neusüß, M. Wendisch, F. Stratmann, C. Koziar, A. Keil, A. Wiedensohler, and M. Ebert, "Particle scattering, backscattering, and absorption coefficients: An in situ closure and sensitivity study," J. Geophys. Res. 107(D21), 8122, doi:10.1029/2000JD000234 (2002). [CrossRef]
  13. S. H. Cadle and J. Groblicki, "An evaluation of methods for the determination of organic and elemental carbon in particulate samples," in Particulate Carbon: Atmospheric Life Cycle, G.T.Wolff and R.L.Klimisch, eds. (Plenum, 1982).
  14. A. Ansmann, U. Wandinger, A. Wiedensohler, and U. Leiterer, "Lindenberg Aerosol Characterization Experiment 1998 (LACE 98): Overview," J. Geophys. Res. 107(D21), 8129, doi: 10.1029/2000JD000233 (2002). [CrossRef]
  15. C. F. Bohren and D. R. Huffmann, "Absorption and scattering of light by small particles," (Wiley, 1983).
  16. C. S. Sloane and G. T. Wolff, "Prediction of ambient light scattering using a physical model responsive to relative humidity: Validation with measurements from Detroit," Atmos. Environ. 19, 669-680 (1984).
  17. "A preliminary cloudless standard atmosphere for radiation computation, Radiation Commission of IAMAP(1986)," World Climate Programme, WCP-112, WMO/TD (No. 24, World Meteorological Organization, Geneva, 1986).
  18. G. A. d'Almeida, P. Koepke, and E. P. Shettle, Atmospheric Aerosols. Global Climatology and Radiative Characteristics (ADP, 1991).
  19. I. B. Svenningsson, H. C. Hansson, A. Wiedensohler, J. A. Ogren, K. J. Noone, and A. Hallberg, "Hygroscopic growth of aerosol particles in the Po valley," Tellus , Ser. B 44B, 556-569 (1992).
  20. E. Swietlicki, J. C. Zhou, D. S. Covert, K. Hameri, B. Busch, M. Vakeva, U. Dusek, O. H. Berg, A. Wiedensohler, P. Aalto, J. Makela, B. G. Martinsson, G. Papaspiropoulos, B. Mentes, G. Frank, and F. Stratmann, "Hygroscopic properties of aerosol particles in the northeastern Atlantic during ACE-2," Tellus , Ser. B 52B, 201-227 (2000).
  21. B. Busch, K. Kandler, L. Schutz, and C. Neusüß, "Hygroscopic properties and water-soluble volume fraction of atmospheric particles in the diameter range from 50 nm to 3.8 μm during LACE 98," J. Geophys. Res. 107(D21), 8119 doi: 10.1029/2000JD000228 (2002). [CrossRef]
  22. G. Hänel, "Parametrization of the influence of relative humidity on optical aerosol properties," in Aerosols and Their Climatic Effects, H.E. Gerber and A. Deepak, eds. (ADP, 1984), pp. 117-122.
  23. X. Zhang, B. J. Turpin, P. H. McMurry, S. H. Herig, and M. R. Stolzenburg, "Mie theory evaluation of species contributions to 1990 wintertime visibility reduction in the Grand Canyon," J. Air Waste Manage. Assoc. 44, 153-162 (1994).
  24. R. M. Hoff, L. Guise-Bagley, R. M. Staebler, H. A. Wiebe, J. Brook, B. Georgi, and T. Düsterdiek, "Lidar, nephelometer, and in situ aerosol experiments in southern Ontario," J. Geophys. Res. 101 (D14), 19999-19209 (1996). [CrossRef]
  25. G. Feingold and B. Morley, "Aerosol hygroscopic properties as measured by lidar and comparison with in situ measurements," J. Geophys. Res. 108(D11), 4327, doi:10.1029/2002JD002842 (2003). [CrossRef]
  26. H. Horvath, "Influence of atmospheric aerosols upon the global radiation balance," in Atmospheric Particles, R.M.Harrison and R.E.van Grieken, eds., IUPAC Series on Analytical and Physical Chemistry of Environmental Systems (Wiley, 1998), p. 563.
  27. D. Müller, U. Wandinger, and A. Ansmann, "Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory," Appl. Opt. 38, 2346-2357 (1999). [CrossRef]
  28. I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, U. Wandinger, and D. N. Whiteman, "Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding," Appl. Opt. 41, 3685-3699 (2002). [CrossRef] [PubMed]
  29. D. Althausen, D. Müller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, and S. Zörner, "Scanning 6-wavelength 11-channel aerosol lidar," J. Atmos. Ocean. Technol. 17, 1469-1482 (2000). [CrossRef]
  30. I. Mattis, A. Ansmann, D. Müller, U. Wandinger, and D. AlthausenJ. Geophys. Res. 109(D13), D13203 doi:10.1029/2004JD004600 (2004). [CrossRef]
  31. M. Pahlow, D. Müller, G. Feingold, W. Eberhard, and R. Steward, "Retrieval of aerosol properties from combined multiwavelength lidar and Sun photometer data: simulations," (submitted to Appl. Opt.).
  32. M. Wendisch and W. von Hoyningen-Huene, "Possibility of refractive index determination of atmospheric aerosol particles by ground-based solar extinction and scattering measurements," Atmos. Environ. 28, 785-792 (1994). [CrossRef]
  33. O. Dubovik and M. D. King, "A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements," J. Geophys. Res. 105 (D16), 20673-20696 (2000). [CrossRef]
  34. D. Müller, U. Wandinger, and A. Ansmann, "Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: simulation," Appl. Opt. 38, 2358-2368 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited