OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 11 — Apr. 10, 2006
  • pp: 2474–2494

Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman lidar and of relative humidity in combination with differential absorption lidar: performance simulations

Paolo Di Girolamo, Andreas Behrendt, and Volker Wulfmeyer  »View Author Affiliations

Applied Optics, Vol. 45, Issue 11, pp. 2474-2494 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (2195 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The performance of a spaceborne temperature lidar based on the pure rotational Raman (RR) technique in the UV has been simulated. Results show that such a system deployed onboard a low-Earth-orbit satellite would provide global-scale clear-sky temperature measurements in the troposphere and lower stratosphere with precisions that satisfy World Meteorological Organization (WMO) threshold observational requirements for numerical weather prediction and climate research applications. Furthermore, nighttime temperature measurements would still be within the WMO threshold observational requirements in the presence of several cloud structures. The performance of aerosol extinction measurements from space, which can be carried out simultaneously with temperature measurements by RR lidar, is also assessed. Furthermore, we discuss simulations of relative humidity measurements from space obtained from RR temperature measurements and water-vapor data measured with the differential absorption lidar (DIAL) technique.

© 2006 Optical Society of America

OCIS Codes
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(280.3640) Remote sensing and sensors : Lidar

Original Manuscript: August 17, 2005
Revised Manuscript: November 15, 2005
Manuscript Accepted: November 16, 2005

Paolo Di Girolamo, Andreas Behrendt, and Volker Wulfmeyer, "Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman lidar and of relative humidity in combination with differential absorption lidar: performance simulations," Appl. Opt. 45, 2474-2494 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. World Meteorological Organisation (WMO), Expert Team, Commission on Basic Systems, Working Group on Satellites, Third session, Final Report, No. 1 (WMO, 1998), p. 73.
  2. CEOS WMO On-line Database, Version 2.5, Observational requirements, http://altostratus.wmo.ch/sat/stations/lowbarasplowbarhtxlowbaridc/Requirements.asp (2003).
  3. D. Morançais, F. Fabre, M. Schillinger, J. C. Barthès, M. Endemann, and A. Culoma, "ALADIN: the first European lidar in space," in Proceedings of the 22nd International Laser Radar Conference, ESA SP-561 (European Space Agency, 2004), Vol. 1, pp. 127-129.
  4. O. Reitebuch, E. Chinal, Y. Durand, M. Endemann, R. Meynart, D. Morancais, and U. Paffrath, "Development of an airborne demonstrator for ADM-AEOLUS and campaign activities," in Proceedings of the 22nd International Laser Radar Conference, ESA SP-561 (European Space Agency, 2004), Vol. 1, pp. 1007-1010.
  5. European Space Agency, "WALES--Water Vapour Lidar Experiment in Space, Report for Mission Selection, Technical and Programmatic Annex," B.Battrick, ed., ESA SP-1279 (European Space Agency, 2004).
  6. A. Behrendt, T. Nakamura, M. Onishi, R. Baumgart, and T. Tsuda, "Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient," Appl. Opt. 41, 7657-7666 (2002). [CrossRef]
  7. V. Wulfmeyer, H. Bauer, P. Di Girolamo, and C. Serio, "Comparison of active and passive remote sensing from space: an analysis based on the simulated performance of IASI and space borne differential absorption lidar," in Remote Sensing of Environment, (Elsevier, 2005), Vol. 95, pp. 211-230. [CrossRef]
  8. A. L. Palisoc, "Large telescope using a holographically-corrected membrane mirror" (NASA Institute for Advanced Concepts, 2000), http://www.niac.usra.edu/studies/.
  9. I. Bekey, "An extremely large yet ultra light weight space telescope and array" (NASA Institute for Advanced Concepts, 1999), http://www.niac.usra.edu/studies/.
  10. N. J. Woolf, "Very large optics for the study of extrasolar terrestrial planets" (NASA Institute for Advanced Concepts, 1999), http://www.niac.usra.edu/studies/.
  11. V. Wulfmeyer, H. Bauer, S. Crewell, G. Ehret, O. Reitebuch, C. Werner, M. Wirth, D. Engelbart, A. Rhodin, W. Wergen, A. Giesen, H. Grassl, G. Huber, H. Klingenberg, P. Mahnke, U. Kummer, C. Wührer, P. Ritter, R. Wallenstein, and U. Wandinger, "Lidar research network water vapour and wind," Meteorol. Z. 12, 6-24 (2003). [CrossRef]
  12. G. Ehret, H. H. Klingenberg, U. Hefter, A. Assion, A. Fix, G. Proberaj, S. Berger, S. Geiger, and Q. Lü, "High peak and average power all solid-state laser systems for airborne LIDAR applications," LaserOpto 32, 29-37 (2000).
  13. M. Ostermeyer, P. Kappe, R. Menzel, and V. Wulfmeyer, "Frequency stabilized, diode pumped Nd:YAG laser with up to 0.5 J pulse energy and average output powers of 100W," in Proceedings of the 22nd International Laser Radar Conference, ESA SP-561 (European Space Agency, 2004), Vol. 1, pp. 57-60.
  14. M. Ostermeyer, P. Kappe, R. Menzel, and V. Wulfmeyer, "Diode-pumped Nd:YAG master oscillator power amplifier with high pulse energy, excellent beam quality, and frequency-stabilized master oscillator as a basis for a next-generation system," Appl. Opt. 44, 582-590 (2005). [CrossRef] [PubMed]
  15. G. Wagner, M. Shiler, and V. Wulfmeyer, "Design and development of a high-power Ti:sapphire laser transmitter," in Proceedings of the 22nd International Laser Radar Conference, ESA SP-561 (European Space Agency, 2004), Vol. 1, pp. 203-206.
  16. C. Camy-Peyret and J. Eyre, eds., Science Plan, Issue 1 (EUMETSAT, 1998).
  17. R. Harris, Satellite Remote Sensing: An Introduction (Routledge, 1987).
  18. S. J. English, "Estimation of temperature and humidity profile information from microwave radiances over different surface types," J. Appl. Meteorol. 38, 1526-1541 (1999). [CrossRef]
  19. F. Karbou, F. Aires, C. Prigent, and L. Eymard, "Potential of Advanced Microwave Sounding Unit-A (AMSU-A) and AMSU-B measurements for atmospheric temperature and humidity profiling over land," J. Geophys. Res. 110, D07109, doi: (2005). [CrossRef]
  20. European Space Agency, "ACE+--Atmosphere and Climate Explorer," B. Battrick, ed., ESA SP-1279 (European Space Agency, 2004).
  21. A. Behrendt, "Temperature measurements with lidar," in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, Vol. 102 of Springer Series in Optical Sciences, C. Weitkamp, ed. (Springer, 2005), pp. 273-305.
  22. L. B. Elterman, "Seasonal trends of temperature, density, and pressure to 67.6 km obtained with the searchlight probing technique," J. Geophys. Res. 58, 519-530 (1953). [CrossRef]
  23. A. Hauchecorne and M. L. Chanin, "Density and temperature profiles obtained by lidar between 35 and 70 km," Geophys. Res. Lett. 7, 565-568 (1980). [CrossRef]
  24. T. Leblanc, I. S. McDermid, A. Hauchecorne, and P. Keckhut, "Evaluation of lidar temperature analysis algorithms using simulated data," J. Geophys. Res. 103, 6177-6187 (1998).
  25. P. Keckhut, M. L. Chanin, and A. Hauchecorne, "Stratospheric temperature measurement using Raman lidar," Appl. Opt. 29, 5182-5186 (1990). [CrossRef] [PubMed]
  26. G. Mégie and R. T. Menzies, "Complementarity of UV and IR differential absorption lidar for global measurements of atmospheric species," Appl. Opt. 19, 1173-1183 (1980). [CrossRef] [PubMed]
  27. F. A. Theopold and J. Bösenberg, "Differential absorption lidar measurements of atmospheric temperature profiles: theory and experiment," J. Atmos. Oceanic Technol. 10, 165-179 (1993). [CrossRef]
  28. J. Bösenberg, "Ground-based differential absorption lidar for water-vapor and temperature profiling: methodology," Appl. Opt. 37, 3845-3860 (1998). [CrossRef]
  29. V. Wulfmeyer, "Ground-based differential absorption lidar for water-vapor profiling: development and specifications of a high-performance laser transmitter," Appl. Opt. 37, 3804-3824 (1998). [CrossRef]
  30. G. Fiocco, G. Benedetti-Michelangeli, K. Maschberger, and E. Madonna, "Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar," Nature 229, 78-79 (1971).
  31. D. Hua, M. Uchida, and T. Kobayashi, "Ultraviolet high-spectral-resolution Rayleigh-Mie lidar with a dual-pass Fabry-Perot etalon for measuring atmospheric temperature profiles of the troposphere," Opt. Lett. 29, 1063-1065 (2004). [CrossRef] [PubMed]
  32. J. A. Cooney, "Measurements of atmospheric temperature profiles by Raman backscatter," J. Appl. Meteorol. 11, 108-112 (1972). [CrossRef]
  33. J. A. Salzman and T. A. Coney, "Remote measurement of atmospheric temperatures by Raman lidar," NASA Tech. Memo TM X-68250 (NASA, 1973).
  34. J. A. Cooney and M. Pina, "Laser radar measurements of atmospheric temperature profiles by use of Raman rotational backscatter," Appl. Opt. 15, 602-603 (1976). [CrossRef] [PubMed]
  35. Y. Arshinov, S. Bobrovnikov, V. E. Zuev, and V. M. Mitev, "Atmospheric temperature measurements using pure rotational Raman lidar," Appl. Opt. 22, 2984-2990 (1983). [CrossRef] [PubMed]
  36. A. Behrendt and J. Reichardt, "Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator," Appl. Opt. 39, 1372-1378 (2000). [CrossRef]
  37. I. Mattis, A. Ansmann, D. Althausen, V. Jaenisch, U. Wandinger, D. Müller, Y. F. Arshinov, S. M. Bobrovnikov, and I. B. Serikov, "Relative-humidity profiling in the troposphere with a Raman lidar," Appl. Opt. 41, 6451-6462 (2002). [CrossRef] [PubMed]
  38. A. Behrendt, T. Nakamura, and T. Tsuda, "Combined temperature lidar for measurements in the troposphere, stratosphere, and mesosphere," Appl. Opt. 43, 2930-2939 (2004). [CrossRef] [PubMed]
  39. W. F. Feltz, W. L. Smith, R. O. Knuteson, H. R. Revercomb, H. B. Howell, and H. H. Woolf, "Meteorological applications of temperature and water vapor retrievals from the ground-based Atmospheric Emitted Radiance Interferometer (AERI)," J. Appl. Meteorol. 37, 857-875 (1998). [CrossRef]
  40. American National Standards Institute, "Safe use of lasers," ANSI 2136.1-1986 (American National Standards Institute, 1986).
  41. International Electrotechnical Commission,Safety of Laser Products--Part 1: Equipment Classification, Requirements and User's Guide, ed. 1.2, IEC 60825-1 (International Electrotechnical Commission, 2001).
  42. P. Di Girolamo, R. Marchese, D. N. Whiteman, and B. B. Demoz, "Rotational Raman lidar measurements of atmospheric temperature in the UV," Geophys. Res. Lett. 31, L01106, doi: (2004). [CrossRef]
  43. G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, and V. Mitev, "Atmospheric temperature profiles made by rotational Raman scattering," Appl. Opt. 32, 2758-2764 (1993). [CrossRef] [PubMed]
  44. Hamamatsu,Photomultiplier Tube--Principle to Application, 1st ed. (Hamamatsu Photonics, 1994).
  45. P. Di Girolamo, D. Summa, V. Wulfmeyer, H. Bauer, H. S. Bauer, A. Behrendt, M. Wirth, and B. Mayer, "Development of an end-to-end model to simulate the performances of a water vapour DIAL system in space," Final Report, ESA ESTEC Contract 16993/03/NL/FF (European Space Agency, 2004).
  46. American National Standards Institute, "Standard tables for reference solar spectral irradiance at air mass 1.5: direct normal and hemispherical for a 37 tilted surface," ASTM Standard G-173-03 (American National Standards Institute, 1985).
  47. L. Henyey and J. Greenstein, "Diffuse radiation in the galaxy," Astrophys. J. 93, 70-83 (1941). [CrossRef]
  48. F. Hovis, B. Gentry, M. Rhoades, R. Burnham, H. Chen, and S. Li, "Single frequency lasers for Doppler wind lidar," in 30th International Symposium on Remote Sensing of Environment (International Society of Photogrammetry and Remote Sensing, 2003), p. 73.
  49. Y. Arshinov and S. Bobrovnikov, "Use of a Fabry-Perot interferometer to isolate pure rotational Raman spectra of diatomic molecules," Appl. Opt. 38, 4635-4638 (1999). [CrossRef]
  50. S. Bobrovnikov, Y. F. Arshinov, I. B. Serikov, D. Althausen, A. Ansmann, I. Mattis, and U. Wandinger, "Daytime temperature profiling in the troposphere with a pure rotational Raman lidar," in Proceedings of the 21st International Laser Radar Conference, Part II (Defence R & D Canada, 2002), pp. 717-720.
  51. European Space Agency, ARMA Reference Model of the Atmosphere, Tech. Rep. APP-FP/99-11239/AC/ac (European Space Agency, 1999).
  52. D. Nedeljkovic, A. Hauchecorne, and M. L. Chanin, "Rotational Raman lidar to measure the atmospheric temperature from the ground," IEEE Trans. Geosci Remote Sens. 31, 90-101 (1993). [CrossRef]
  53. J. A. McKay, "Single and tandem Fabry-Perot etalons as solar background filters for lidar," Appl. Opt. 38, 5851-5858 (1999). [CrossRef]
  54. G. C. Herring and W. K. Bischel, "Model of the rotational Raman gain coefficients for N2 in the atmosphere," Appl. Opt. 26, 2988-2994 (1987). [CrossRef] [PubMed]
  55. P. L. Varghese and R. K. Hanson, "Collisional narrowing effects on spectral line shapes measured at high resolution," Appl. Opt. 23, 2376-2385 (1984). [CrossRef] [PubMed]
  56. K. S. Jammu, G. E. St. John, and H. L. Welsh, "Pressure broadening of the rotational Raman lines of some simple gases," Can. J. Phys. 44, 797-814 (1966). [CrossRef]
  57. R. P. Shrivastava and H. R. Zaidi, "Calculation of self-broadened widths of rotational Raman lines in H2 and N2," Can. J. Phys. 55, 542-548 (1977). [CrossRef]
  58. J. Bendtsen, "The rotational and rotation-vibrational Raman spectra of 14N2, 14N15N and 15N2," J. Raman Spectrosc. 2, 133-145 (1974). [CrossRef]
  59. R. Bond, A. M. Foster, V. K. Thompson, D. Rees, and J. P. Do Carmo, "High-resolution optical filtering technology," in Proceedings of the 22nd International Laser Radar Conference, ESA SP-561 (European Space Agency, 2004), Vol. 1, pp. 239-242.
  60. U. Wandinger, "Multiple-scattering influence on extinction and backscatter-coefficient measurements with Raman and high-spectral-resolution lidars," Appl. Opt. 37, 417-427 (1998). [CrossRef]
  61. A. Macke, "Scattering of light by irregular ice crystals in three-dimensional inhomogeneous cirrus clouds," in Proceedings of the Eighth Conference on Atmospheric Radiation (American Meteorological Society, 1994), pp. 304-306.
  62. J. Marling, "1.05-1.44 μm tunability and performance of the CW Nd3+:YAG laser," IEEE J. Quantum Electron. QE-14, 56-62 (1978). [CrossRef]
  63. R. J. List, ed., Smithsonian Meteorological Tables, 6th ed. (Smithsonian Institution Press, 1951), p. 527.
  64. A. Behrendt, T. Nakamura, Y. Sawai, M. Onishi, and T. Tsuda, "Rotational vibrational-rotational Raman lidar: design and performance of the RASC Raman lidar at Shigaraki (34.8 deg N, 136.1 deg E), Japan," in Lidar Remote Sensing for Industry and Environment Monitoring II, U.N.Singh, ed., Proc. SPIE 4484, 151-162 (2001).
  65. R. Marchese, P. Di Girolamo, D. N. Whiteman, and B. B. Demoz, "UV Raman lidar measurements of atmospheric temperature/relative humidity during IHOP: measurements in presence of clouds," in Proceedings of the 22nd International Laser Radar Conference, ESA SP-561 (European Space Agency, 2004), Vol. 1, pp. 455-458.
  66. A. Behrendt and V. Wulfmeyer, "Combining water vapor DIAL and rotational Raman temperature lidar for humidity, temperature, and particle measurements with high resolution and accuracy," in Lidar Remote Sensing for Industry and Environment Monitoring IV, U.N.Singh, ed., Proc. SPIE 5154, 61-64 (2003).
  67. A. Ansmann, M. Riebesell, and C. Weitkamp, "Measurement of atmospheric aerosol extinction profiles with Raman lidar," Opt. Lett. 15, 746-748 (1990). [CrossRef] [PubMed]
  68. J. Buckley, T. Burnett, G. Sinnis, P. Coppi, P. Gondolo, J. Kapusta, J. McEnery, J. Norris, P. Ullio, and D. A. Williams, "Gamma-ray summary report," http://pancake.uchicago.edu/∼snowmass2001/p42.pdf (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited