OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 11 — Apr. 10, 2006
  • pp: 2521–2528

Effects of excited-state absorption on two-photon absorbing materials

Yongwang Gao and Mary J. Potasek  »View Author Affiliations


Applied Optics, Vol. 45, Issue 11, pp. 2521-2528 (2006)
http://dx.doi.org/10.1364/AO.45.002521


View Full Text Article

Enhanced HTML    Acrobat PDF (1087 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Many chromophores with a large two-photon absorptive cross section are hybrid materials where the two-photon absorption (TPA) is coupled to an excited-state absorption (ESA). We develop a numerical technique to investigate hybrid two-photon processes in nonlinear absorbers. Our numerical method compares well with published results. In addition to customary calculation of the transmission curve, we demonstrate the importance of the ESA following the TPA, which may cause significant temporal and radial distortion. We also show that improvements in the transmission can result in significant radial and temporal pulse distortion, which may actually reduce the material effect.

© 2006 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(190.4180) Nonlinear optics : Multiphoton processes

History
Original Manuscript: July 18, 2005
Revised Manuscript: September 14, 2005
Manuscript Accepted: October 14, 2005

Citation
Yongwang Gao and Mary J. Potasek, "Effects of excited-state absorption on two-photon absorbing materials," Appl. Opt. 45, 2521-2528 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-11-2521


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. G. Silly, L. Porres, O. Mongin, P. A. Chollet, and M. Blanchard-Desce, "Optical limiting in the red-NIR range with soluble two-photon absorbing molecules," Chem. Phys. Lett. 379, 74-80 (2003). [CrossRef]
  2. K. Ogawa, A. Ohashi, Y. Kobuke, K. Kamada, and K. Ohta, "Strong two-photon absorption of self-assembled butadiyne-linked bisporphyrin," J. Am. Chem. Soc. 125, 13356-13357 (2003). [CrossRef] [PubMed]
  3. J. Yoo, S. K. Yang, M. Jeong, H. C. Ahn, S. Jeon, and B. R. Cho, "Bis-1,4-(p-diarylaminostryl)-2,5-dicyanobenzene derivatives with large two-photon absorption cross-sections," Org. Lett. 5, 645-648 (2003). [CrossRef] [PubMed]
  4. H. E. Pudavar, M. P. Joshi, P. N. Prasad, and B. A. Reinhardt, "High-density three-dimensional optical data storage in a stacked compact disk format with two-photon writing and single photon readout," Appl. Phys. Lett. 74, 1338-1340 (1999). [CrossRef]
  5. B. H. Cumpston, S. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999). [CrossRef]
  6. W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990). [CrossRef] [PubMed]
  7. S. Maruo and S. J. Kawata, "Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication," J. Microelectromech. Syst. 7, 411-422 (1998). [CrossRef]
  8. S. M. Kirkpatrick, J. W. Baur, C. M. Clark, L. R. Denny, B. R. Reinhardt, R. Kannan, and M. O. Stone, "Holographic recording using two-photon-induced photopolymerization," Appl. Phys. A 69, 461-464 (1999). [CrossRef]
  9. C. Diamond, Y. Boiko, and S. Esener, "Two-photon holography in a 3D photopolymer host-guest matrix," Opt. Express 6, 64-68 (2000). [CrossRef] [PubMed]
  10. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001). [CrossRef] [PubMed]
  11. M. O. Stone, J. W. Baur, L. A. Sowards, and S. M. Kirkpatrick, "Ultrafast holographic recording of snake infrared pit tissue using two-photon induced photopolymerization," in Proc. SPIE 3934, 36-42 (2000).
  12. S. M. Kirkpatrick, E. K. Peterman, G. T. Anderson, J. E. Franklin, and J. W. Baur, "Nonlinear photophysics and charge generation of donor-acceptor two-photon absorbing dyes," in Proc. SPIE 4797, 220-228 (2003).
  13. F. K. Chan, R. M. Siegel, D. Zacharias, R. Swofford, K. L. Holmes, R. Y. Tsien, and M. J. Lenardo, "Fluorescence resonance energy transfer analysis of cell surface receptor interactions and signaling using spectral variants of the green fluorescent protein," Cytometry 44, 361-368 (2001). [CrossRef] [PubMed]
  14. T. Misteli and D. L. Spector, "Applications of the green fluorescent protein in cell biology and biotechnology," Nat. Biotechnol. 15, 961-964 (1997). [CrossRef] [PubMed]
  15. M. E. Dickinson, E. Simbuerger, B. Zimmermann, C. W. Waters, and S. E. Fraser, "Multiphoton excitation spectra in biological samples," J. Biomed. Opt. 8, 329-338 (2003). [CrossRef] [PubMed]
  16. B. J. Bacskai, J. Skoch, G. A. Hickey, R. Allen, and B. T. Hyman, "Fluorescence resonance energy transfer determinations using multiphoton fluorescence lifetime imaging microscopy to characterize amyloid-beta plaques," J. Biomed. Opt. 8, 368-375 (2003). [CrossRef] [PubMed]
  17. J. W. Perry, "Organic and metal-containing reverse saturable absorbers for optical limiters," in Nonlinear Optics of Organic Molecules and Polymers, H.S.Nalwa and S.Miyata, eds. (CRC Press, 1997), pp. 813-839.
  18. G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, "Optical limiting effect in a two-photon absorption dye doped solid matrix," Appl. Phys. Lett. 67, 2433-2435 (1995). [CrossRef]
  19. M. Stone and R. Naik, Encyclopedia of Smart Materials (Wiley, 2000).
  20. L. L. Brott, R. R. Naik, D. J. Pikas, S. M. Kirkpatrick, D. W. Tomlin, P. W. Whitlock, S. J. Clarkson, and M. O. Stone, "Ultrafast holographic nanopatterning of biocatalytically formed silica," Nature 413, 291-293 (2001). [CrossRef] [PubMed]
  21. F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. Zhang, S. R. Marder, and J. W. Perry, "Laser and electron beam induced growth of nanoparticles for 2D and 3D metal patterning," Adv. Mater. 14, 194-198 (2002). [CrossRef]
  22. S. M. Kirkpatrick, C. Clark, and R. L. Sutherland, "Single state absorption spectra of novel nonlinear optical materials," Mater. Res. Soc. Symp. Proc. 598, 77-85 (2000).
  23. D. G. Mclean, R. L. Sutherland, M. C. Brant, D. M. Brandelik, P. A. Fleitz, and T. Pottenger, "Nonlinear absorption study of C60-toluene solution," Opt. Lett. 18, 858-860 (1993). [CrossRef] [PubMed]
  24. K. R. Welford, S. N. R. Swatton, S. Hughes, S. J. Till, G. Spruce, R. C. Hollins, and B. S. Wherrett, "Nonlinear absorption in organic dyes," Mater. Res. Soc. Symp. Proc. 374, 239-256 (1995). [CrossRef]
  25. C. Li, L. Zhang, M. Yang, H. Wang, and Y. Wang, "Dynamic and steady-state behaviors of reverse saturable absorption in metallophthalocyanine," Phys. Rev. A 49, 1149-1157 (1994). [CrossRef] [PubMed]
  26. I. C. Khoo, A. Diaz, and J. Ding, "Nonlinear-absorbing fiber array for large-dynamic-range optical limiting application against intense short laser pulses," J. Opt. Soc. Am. B 21, 1234-1240 (2004). [CrossRef]
  27. R. Lepkowicz, A. Kobyakov, D. J. Hagan, and E. W. Van Stryland, "Picosecond optical limiting in reverse saturable absorbers: a theoretical and experimental study," J. Opt. Soc. Am. B 19, 94-101 (2002). [CrossRef]
  28. T. Xia, A. Dogariu, K. Mansour, D. J. Hagan, A. A. Said, and E. W. Van Stryland, "Nonlinear response and optical limiting in inorganic metal cluster Mo2Ag4S8(PPh3)4 solutions," J. Opt. Soc. Am. B 15, 1497-1501 (1998). [CrossRef]
  29. I. C. Khoo, A. Diaz, M. V. Wood, and P. H. Chen, "Passive optical limiting of picosecond-nanosecond laser pulses using highly nonlinear organic liquid cored fiber array," IEEE J. Quantum Electron. 7, 760-768 (2001). [CrossRef]
  30. G. Witzgall, R. Vrijen, and E. Yablonovitch, "Single-shot two-photon exposure of commercial photoresist for the production of three-dimensional structures," Opt. Let. 23, 1745-1747 (1998). [CrossRef]
  31. C. Martineau, R. Anemian, C. Andraud, I. Wang, M. Bouriau, and P. L. Baldeck, "Efficient initiators for two-photon induced polymerization in the visible range," Chem. Phys. Lett. 362, 291-295 (2002). [CrossRef]
  32. L. Shah, J. Tawney, M. Richardson, and K. Richardson, "Self-focusing during femtosecond micromachining of silicate glasses," IEEE J. Quantum Electron. 40, 57-68 (2004). [CrossRef]
  33. J. E. Ehrlich, X. L. Wu, I.-Y. S. Lee, Z.-Y. Hu, H. Rochel, S. R. Marder, and J. W. Perry, "Two-photon absorption and broadband optical limiting with bis-donor stilbenes," Opt. Lett. 22, 1843-1845 (1997). [CrossRef]
  34. R. Anemian, Y. Morel, P. L. Baldech, B. Paci, K. Kretsch, J. M. Nunzi, and C. Andraud, "Optical limiting in the visible range: molecular engineering around N4,N4-bis(4-methoxyphenyl)-N4,N4-disphenyl-4,4′-diaminobiphenyl," J. Mater. Chem. 13, 2157-2163 (2003). [CrossRef]
  35. M. J. Potasek and Y. Gao, "Detailed simulation of two-photon absorption for 3D micro-nano engineering and patterning," in Proc. SPIE 5592, 389-399 (2005).
  36. S. Kim, D. McLaughlin, and M. Potasek, "Propagation of the electromagnetic field in optical-limiting reverse-saturable absorbers," Phys. Rev. A 61, 025801-025804 (2000). [CrossRef]
  37. M. J. Potasek, S. Kim, and D. McLaughlin, "All optical power limiting," J. Nonlinear Opt. Phys. Mater. 9, 343-364 (2000). [CrossRef]
  38. G. S. He, J. Swiatkiewicz, Y. Jiang, and P. N. Prasad, "Two-photon excitation and optical spatial-profile reshaping via a nonlinear absorbing medium," J. Phys. Chem. A 104, 4805-4810 (2000). [CrossRef]
  39. S. Delysse, P. Filloux, V. Dumarcher, C. Fiorini, and J.-M. Nunzi, "Multiphoton absorption in organic dye solutions," Opt. Mater. 9, 347-351 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited