OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 12 — Apr. 20, 2006
  • pp: 2810–2820

Radiative model of post-breakdown laser-induced plasma expanding into ambient gas

A. Ya. Kazakov, I. B. Gornushkin, N. Omenetto, B. W. Smith, and J. D. Winefordner  »View Author Affiliations


Applied Optics, Vol. 45, Issue 12, pp. 2810-2820 (2006)
http://dx.doi.org/10.1364/AO.45.002810


View Full Text Article

Enhanced HTML    Acrobat PDF (329 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The dynamics of the radiative plasma expansion into an ambient gas is considered. The model describes the evolution of the plasma emission spectrum and the dynamics of the resulting shock wave. The time frame for the applicability of the model is in the tens of nanoseconds after the laser pulse is terminated, until a few microseconds later when the plasma ceases to emit. It is assumed that local thermodynamic equilibrium is established and that the plume expands with spherical symmetry. The model outputs are spatial and temporal distributions of atoms, ions, and electron number densities, evolution of atom and ion line profiles, and the shock wave. The model should be applicable to spectroscopic analysis of the initial plasma state and plasma dynamics.

© 2006 Optical Society of America

OCIS Codes
(300.0300) Spectroscopy : Spectroscopy
(300.2140) Spectroscopy : Emission
(300.6360) Spectroscopy : Spectroscopy, laser

History
Original Manuscript: April 22, 2005
Revised Manuscript: November 13, 2005
Manuscript Accepted: November 23, 2005

Citation
A. Ya. Kazakov, I. B. Gornushkin, N. Omenetto, B. W. Smith, and J. D. Winefordner, "Radiative model of post-breakdown laser-induced plasma expanding into ambient gas," Appl. Opt. 45, 2810-2820 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-12-2810


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Winefordner, I. B. Gornushkin, D. Pappas, O. I. Matveev, and B. W. Smith, " Novel uses of lasers in atomic spectroscopy. Plenary lecture," J. Anal. At. Spectrom. 15, 1161- 1189 ( 2000). [CrossRef]
  2. J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, " Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star," J. Anal. At. Spectrom. 19, (advance article) ( 2004). [CrossRef]
  3. S. Palanco, S. Conesa, and J. J. Laserna, " Analytical control of liquid steel in an induction melting furnace using a remote laser induced plasma spectrometer," J. Anal. At. Spectrom. 19, 462- 467 ( 2004). [CrossRef]
  4. A. K. Rai, F. -Y. Yueh, and J. P. Singh, " Laser-induced breakdown spectroscopy of molten aluminum alloy," Appl. Opt. 42, 2078- 2084 ( 2003). [CrossRef] [PubMed]
  5. K. Niemax and W. Sdorra, " Optical emission spectrometry and laser-induced fluorescence of laser-produced sample plumes," Appl. Opt. 29, 5000- 5006 ( 1990). [CrossRef] [PubMed]
  6. A. Bogaerts, Z. Chen, R. Gijbels, and A. Vertes, " Laser ablation for analytical sampling: what we can learn from modeling?," Spectrochim. Acta Part B 58, 1867- 1893 ( 2003). [CrossRef]
  7. M. Capitelli, A Casavola, G. Colonna, and A. De Giakomo, " Laser-induced plasma expansion: theoretical and experimental aspects," Spectrochim. Acta Part B 59, 271- 289 ( 2004). [CrossRef]
  8. I. B. Gornushkin, A. Ya. Kazakov, N. Omenetto, B. W. Smith, and J. D. Winefordner, " Radiation dynamics of post-breakdown laser induced plasma," Spectrochim. Acta B , 59, 401- 418 ( 2004). [CrossRef]
  9. T. E. Itina, J. Hermann, Ph. Delaporte, and M. Sentis, " Combined continuous-microscopic modeling of laser plume expansion," Appl. Surf. Sci. 208-209, 27- 32 ( 2003). [CrossRef]
  10. J. R. Ho, C. P. Grigoropoulos, and J. A. C. Humphrey, " Gas dynamics and radiation heat transfer in the vapor plume produced by pulsed laser irradiation of aluminum," J. Appl. Phys. 79, 7205- 7215 ( 1996). [CrossRef]
  11. V. I. Mazhukin, V. V. Nossov, M. G. Nickiforov, and I. Smurov, " Optical breakdown in aluminum vapor induced by ultraviolet laser radiation," J. Appl. Phys. 93, 56- 66 ( 2003). [CrossRef]
  12. V. I. Mazhukin, V. V. Nossov, G. Flamant, and I. Smurov, " Modeling of radiation transfer and emission spectra in laser-induced plasma of A1 vapor," J. Quant. Spectrosc. Radiat. Transfer 73, 451- 460 ( 2002). [CrossRef]
  13. L. V. Zhigilei, " Dynamics of the plume formation and parameters of the ejected clusters in short-pulse laser ablation," Appl. Phys. A 76, 339- 350 ( 2003). [CrossRef]
  14. M. I. Zeifman, B. J. Garrison, and L. V. Zhigilei, " Combined molecular dynamics--direct simulation Monte Carlo computational study of laser ablation plume evolution," J. Appl. Phys. 92, 2181- 2193 ( 2002). [CrossRef]
  15. N. Arnold, J. Gruber, and J. Heitz, " Spherical expansion of the vapor plume into ambient gas: an analytical model," Appl. Phys. A 69, (Suppl.) S87- S93 ( 1999).
  16. I. B. Gornushkin, A Ya. Kazakov, N. Omenetto, B. W. Smith, and J. D. Winefordner, " Experimental verification of a radiative model of laser induced plasma expanding into vacuum," Spectrochim. Acta Part B 60, 215- 230 ( 2005). [CrossRef]
  17. I. B. Gornushkin, C. L. Stevenson, B. W. Smith, N. Omenetto, and J. D. Winefordner, " Modeling an inhomogeneous optically thick laser induced plasma: a simplified theoretical approach," Spectrochim. Acta B 56, 1769- 1785 ( 2001). [CrossRef]
  18. G. B. Whitham, Linear and Nonlinear Waves (Wiley, 1974).
  19. Ya. B. Zel'dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, 1966), Vol. 1, p. 143.
  20. V. Kurdyumov, A. L. Sanchez, and A. Linan, " Heat propagation from a concentrated external energy source in a gas," J. Fluid Mech. 491, 379- 410 ( 2003). [CrossRef]
  21. H. C. Le, D. E. Zeitoun, J. D. Parisse, M. Snetis, and W. Marine, " Modeling of gas dynamics for a laser-generated plasma: propagation into low pressure gases," Phys. Rev E 62, 4152- 4161 ( 2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited