OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 13 — May. 1, 2006
  • pp: 2986–2994

Multidimensional optical sensor and imaging system

Bahram Javidi, Seung-Hyun Hong, and Osamu Matoba  »View Author Affiliations

Applied Optics, Vol. 45, Issue 13, pp. 2986-2994 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (1541 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a multidimensional optical sensor and imaging system (MOSIS). Using a time-multiplexing, polarimetric, and multispectral imaging system, we are able to reconstruct a fully integrated multidimensional scene. Image fusion is used to integrate the multidimensional images. The fused image contains more information than the single two-dimensional and three-dimensional (3D) images. The multidimensional imaging system utilizes polarimetric imaging, multispectral imaging, 3D integral imaging with time and space multiplexing, and 3D image-fusion techniques to reconstruct the multidimensionally integrated scene. Optical experiments and computer simulations are presented.

© 2006 Optical Society of America

OCIS Codes
(100.6890) Image processing : Three-dimensional image processing
(110.3080) Imaging systems : Infrared imaging
(110.6880) Imaging systems : Three-dimensional image acquisition
(260.5430) Physical optics : Polarization
(350.2660) Other areas of optics : Fusion

ToC Category:
Three-Dimensional Sensing

Original Manuscript: August 24, 2005
Revised Manuscript: December 31, 2005
Manuscript Accepted: January 13, 2006

Bahram Javidi, Seung-Hyun Hong, and Osamu Matoba, "Multidimensional optical sensor and imaging system," Appl. Opt. 45, 2986-2994 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Javidi and F. Okano, eds., Three Dimensional Television, Video, and Display Technologies (Springer, 2002).
  2. S. A. Benton, ed., Selected Papers on Three-Dimensional Displays (SPIE, 2001).
  3. T. Okoshi, Three-Dimensional Imaging Techniques (Academic, 1976).
  4. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  5. G. Lippmann, "La photographic intergrale," C. R. Acad. Sci. 146, 446-451 (1908).
  6. H. E. Ives, "Optical properties of a Lipmann lenticulated sheet," J. Opt. Soc. Am. 21, 171-176 (1931). [CrossRef]
  7. N. Davis, M. McCormick, and L. Yang, "Three-dimensional imaging systems: a new development," Appl. Opt. 27, 4520-4528 (1988). [CrossRef]
  8. J.-S. Jang and B. Javidi, "Formation of orthoscopic three-dimensional real images in direct pickup one-step integral imaging," Opt. Eng. 42, 1869-1870 (2003). [CrossRef]
  9. B. Lee, S.-W. Min, and B. Javidi, "Theoretical analysis for three-dimensional integral imaging systems with double devices," Appl. Opt. 41, 4856-4865 (2002). [CrossRef] [PubMed]
  10. H. Arimoto and B. Javidi, "Integral three-dimensional imaging with digital reconstruction," Opt. Lett. 26, 157-159 (2001). [CrossRef]
  11. Y. Frauel and B. Javidi, "Digital three-dimensional image correlation by use of computer-reconstructed integral imaging," Appl. Opt. 41, 5488-5496 (2002). [CrossRef] [PubMed]
  12. A. Stern and B. Javidi, "Three-dimensional image sensing and reconstruction with time-division multiplexed computational integral imaging," Appl. Opt. 42, 7036-7042 (2003). [CrossRef] [PubMed]
  13. S. Kishk and B. Javidi, "Improved resolution 3D object sensing and recognition using time multiplexed computational integral imaging," Opt. Express 11, 3528-3541 (2003). [CrossRef] [PubMed]
  14. C. B. Burckhardt, "Optimum parameters and resolution limitation of integral photography," J. Opt. Soc. Am. 58, 71-76 (1968). [CrossRef]
  15. T. Okoshi, "Optimum design and depth resolution of lens sheet and projection type three dimensional displays," Appl. Opt. 10, 2284-2291 (1971). [CrossRef] [PubMed]
  16. J.-Y. Son, V. V. Saveljev, J.-S. Kim, S.-S. Kim, and B. Javidi, "Viewing zones in three-dimensional imaging systems based on lenticular, parallax-barrier, and microlens-array plates," Appl. Opt. 43, 4985-4992 (2004). [CrossRef] [PubMed]
  17. H. Hoshino, F. Okano, H. Isono, and I. Yuyama, "Analysis of resolution limitation of integral photography," J. Opt. Soc. Am. A 15, 2059-2065 (1998). [CrossRef]
  18. M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, "Integral imaging with improved depth of field by use of amplitude-modulated microlens arrays," Appl. Opt. 43, 5806-5813 (2004). [CrossRef] [PubMed]
  19. J.-S. Jang and B. Javidi, "Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics," Opt. Lett. 27, 324-326 (2002). [CrossRef]
  20. S.-H. Hong and B. Javidi, "Improved resolution 3D object reconstruction using computational integral imaging with time multiplexing," Opt. Express 12, 4579-4588 (2004). [CrossRef] [PubMed]
  21. O. Matoba and B. Javidi, "Three-dimensional polarimetric integral imaging," Opt. Lett. 29, 2375-2377 (2004). [CrossRef] [PubMed]
  22. P. Ambs, L. Bigue, R. Binet, J. Colineau, J.-C. Lehureau, and J.-P. Huignard, "Image reconstruction using electro-optic holography," in Proceedings of the 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, LEOS 2003 (IEEE, 2003), Vol. 1, pp. 172-173.
  23. Z. G. Ye and M. Dong, "Morphotropic domain structures and phase transitions in relaxor-based piezo-ferroelectric (1 − x) Pb(Mg1/3Nb2/3)O3−xPbTiO3 single crystal," J. Appl. Phys. 87, 2312-2319 (2000). [CrossRef]
  24. J. K. Lee, J. Yun, K. S. Hong, S. E. Park, and J. Millan, "Domain configuration and crystal structure of Pb(Zn1/3Nb2/3)O3-5%PbTiO3 crystals as a function of the electric-field direction," J. Appl. Phys. 91, 4474-4478 (2002). [CrossRef]
  25. J. Davise, D. McNamara, D. M. Cottrell, and T. Sonhara, "Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator," Appl. Opt. 39, 1549-1554 (2000). [CrossRef]
  26. F. Goudail, F. Galland, and Ph. Réfrégier, "A general framework for designing image processing algorithms for coherent polarimetric images," in Proceedings of IEEE International Conference on Image Processing (IEEE, 2003), pp. 153-156.
  27. J. E. Solomon, "Polarization imaging," Appl. Opt. 20, 1537-1544 (1981). [CrossRef] [PubMed]
  28. L. B. Wolff, "Polarization camera for computer vision with a beam splitter," J. Opt. Soc. Am. A 11, 2935-2945 (1994). [CrossRef]
  29. T. Setälä, M. Kaivola, and A. T. Friberg, "Degree of polarization in near fields of thermal sources: effects of surface waves," Phys. Rev. Lett. 88, 123902 (2002).
  30. J. Swoger, M. Martínez-Corral, J. Huisken, and E. H. K. Stelzer, "Optical scanning holography as a technique for high-resolution three-dimensional biological microscopy," J. Opt. Soc. Am. A 19, 1910-1918 (2002). [CrossRef]
  31. F. Sadjadi and C. S. L. Chun, "Automatic detection of small objects from their infrared state-of-polarization vectors," Opt. Lett. 28, 531-533 (2003). [CrossRef] [PubMed]
  32. P. J. Burt and E. H. Adelson, "The Laplacian pyramid as a compact image code," IEEE Trans. Commun. 31, 532-540 (1983). [CrossRef]
  33. A. Mahalanobis, "Processing of multi-sensor data using correlation filters," in Algorithms, Devices, and Systems for Optical Information Processing II, B.Javidi and D.Psaltis, eds. Proc. SPIE 3466,56-64 (1998).
  34. F. Sadjadi, "Invariant algebra and the fusion of multi-spectral information," Inf. Fusion 3, 39-50 (2002). [CrossRef]
  35. F. Sadjadi, Selected Papers on Sensor and Data Fusion (SPIE, 1996).
  36. I. Daubechies, "Orthonormal bases of compactly supported wavelets," Commun. Pure Appl. Math. 41,906-996 (1988).
  37. S. G. Mallat, "A theory for multiresolution signal decomposition: the wavelet representation," IEEE Trans. Pattern Anal. Mach. Intell. 11, 674-693 (1989).
  38. J. S. Walker, A Primer on Wavelets and Their Scientific Applications (Chapman & Hall/CRC, 1999). [CrossRef]
  39. R. Hayden, G. Dalke, J. Henkel, and J. Bare, "Application of the IHS color transform to the processing of multi-sensor data and image enhancement," presented at the International Symposium on Remote Sensing of Arid and Semi-Arid Lands, (Environmental Research Institute of Michigan, 1982), pp. 599-616.
  40. P. Chavez, S. Sides, and J. Anderson, "Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic," Photogramm. Eng. Remote Sens. 57, 295-303 (1991).
  41. M. Kim, I. Dinstein, and L. Shaw, "A protopype filter design approach to pyramid generation," IEEE Trans. Pattern Anal. Mach. Intell. 15, 1233-1240 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited