OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 13 — May. 1, 2006
  • pp: 3009–3021

Computational hyperspectral interferometry for studies of brain function: proof of concept

Douglas J. Fox, Jr., Hana Tysver Velde, Chrysanthe Preza, Joseph A. O'Sullivan, William H. Smith, and Thomas A. Woolsey  »View Author Affiliations


Applied Optics, Vol. 45, Issue 13, pp. 3009-3021 (2006)
http://dx.doi.org/10.1364/AO.45.003009


View Full Text Article

Enhanced HTML    Acrobat PDF (1360 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Hyperspectral interferometric microscopy uses a unique combination of optics and algorithm design to extract information. Local brain activity rapidly changes local blood flow and red blood cell concentration (absorption) and oxygenation (color). We demonstrate that brain activity evoked during whisker stimulation can be detected with hyperspectral interferometric microscopy to identify the active whisker–barrel cortex in the rat brain. Information about constituent components is extracted across the entire spectral band. Algorithms can be flexibly optimized to discover, detect, quantify, and visualize a wide range of significant biological events, including changes relevant to the diagnosis and treatment of disease.

© 2006 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(100.2000) Image processing : Digital image processing
(100.2960) Image processing : Image analysis
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine

ToC Category:
Application

History
Original Manuscript: September 6, 2005
Revised Manuscript: January 4, 2006
Manuscript Accepted: January 13, 2006

Virtual Issues
Vol. 1, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Douglas J. Fox, Jr., Hana Tysver Velde, Chrysanthe Preza, Joseph A. O'Sullivan, William H. Smith, and Thomas A. Woolsey, "Computational hyperspectral interferometry for studies of brain function: proof of concept," Appl. Opt. 45, 3009-3021 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-13-3009


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. A. Swayze, R. N. Clark, A. F. H. Goetz, T. G. Chrien, and N. S. Gorelick, "Effects of spectrometer band pass, sampling, and signal-to-noise ratio on spectral identification using the Tetracorder algorithm," J. Geophys. Res. 108(E9), 5105, doi: (2003). [CrossRef]
  2. A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, "Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation," Opt. Lett. 28, 28-30 (2003). [CrossRef] [PubMed]
  3. M. Ehlers, "Multisensor image fusion techniques in remote sensing," J. Photogramm. Remote Sens. 46, 19-30 (1991). [CrossRef]
  4. P. D. Hammer, L. F. Johnson, A. W. Strawa, S. E. Dunagan, R. G. Higgins, J. A. Brass, R. E. Slye, D. V. Sullivan, W. H. Smith, B. M. Lobitz, and D. L. Peterson, "Surface reflectance mapping using interferometric spectral imagery from a remotely piloted aircraft," IEEE Trans. Geosci. Remote Sens. 39, 2499-2506 (2001). [CrossRef]
  5. C. Welker and T. A. Woolsey, "Structure of layer IV in the somatosensory neocortex of the rat: description and comparison with mouse," J. Comp. Neurol. 158, 437-454 (1974). [CrossRef] [PubMed]
  6. T. A. Woolsey and H. Van der Loos, "The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex: the description of a cortical field composed of discrete cytoarchitectonic units," Brain Res. 17, 205-242 (1970). [CrossRef] [PubMed]
  7. D. J. Simons, G. E. Carvell, A. E. Hershey, and D. P. Bryant, "Responses of barrel cortex neurons in awake rats and effects of urethane anesthesia," Exp. Brain Res. 91, 259-272 (1992). [CrossRef] [PubMed]
  8. A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, "Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex," Neuron 39, 353-359 (2003). [CrossRef] [PubMed]
  9. J. L. Dowling, M. M. Henegar, D. Liu, C. M. Rovainen, and T. A. Woolsey, "Rapid optical imaging of whisker responses in the rat barrel cortex," J. Neurosci. Methods 66, 113-122 (1996). [CrossRef] [PubMed]
  10. J. Erinjeri and T. A. Woolsey, "Spatial integration of vascular changes with neural activity in mouse cortex," J. Cereb. Blood Flow Metab. 22, 353-360 (2002). [CrossRef] [PubMed]
  11. W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, "Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin," Clin. Chem. 37, 1633-1638 (1991). [PubMed]
  12. P. D. Hammer, F. P. J. Valero, D. L. Peterson, and W. H. Smith, "Remote sensing of Earth's atmosphere and surface using a digital array scanned interferometer: a new type of imaging spectrometer," J. Imaging Sci. Technol. 36, 417-422 (1992).
  13. W. H. Smith and W. Schempp, "Digital array scanned interferometers," Exp. Astron. 1, 389-405 (1991). [CrossRef]
  14. W. H. Smith, "Digital array scanned interferometer, U.S. patent 4,976,542 (11 December 1990).
  15. D. R. Fuhrmann and W. H. Smith, "Empirical modeling and calibration of Fourier transform spectrometers I: linearization and normalization of interferograms," Opt. Eng. 42, 2268-2276 (2003). [CrossRef]
  16. L. Hubert, J. Meulman, and W. Heiser, "Two purposes for matrix factorization: a historic appraisal," SIAM Review 42, 68-82 (2000). [CrossRef]
  17. G. W. Fumas, S. Deerwester, S. T. Dumias, T. K. Landauer, R. A. Harshman, L. A. Streeter, and K. E. Lochbaum, "Information retrieval using a singular value decomposition model of latent semantic structure," in Proceedings of the Eleventh Annual International Conference on Research and Development in Information Retrieval (ACM Press, 1988), pp. 465-480.
  18. "Wilhelm Conrad Röntgen—biography," in Nobel Lectures, Physics 1901-1921 (Elsevier, 1967).
  19. R. S. Ross, "Clinical applications of coronary arteriography," Circulation 27, 107-112 (1963).
  20. F. M. Sones, Jr., E. K. Shirey, W. L. Proudfit, and R. N. Westcaott, "Cine-coronary arteriography," Circulation 20, 773 (1959).
  21. E. A. Graham, W. H. Cole, and G. H. Copher, "Visualization of the gallbladder by the sodium salt of tetrabromophenophthalien.," JAMA , J. Am. Med. Assoc. 82, 1777-1778 (1924). [CrossRef]
  22. P. Asawanonda and C. R. Taylor, "Wood's light in dermatology," Int. J. Dermatol 38, 801-807 (1999). [CrossRef] [PubMed]
  23. J. Niamtu, "Digitally processed ultraviolet images: a convenient, affordable, reproducible means of illustrating ultraviolet clinical examination," Dermatol. Surg. 27, 1039-1042 (2001). [CrossRef]
  24. F. N. Joudi and B. R. Konety, "Fluorescence cystoscopy and bladder surveillance," Curr. Opin. Urol. 14, 265-270 (2004). [CrossRef] [PubMed]
  25. M. M. Ter-Pogossian and H. N. Wagner, Jr., "A new look at the cyclotron for making short-lived isotopes," Nucleonics 24, 50-62 (1966).
  26. S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, "Brain magnetic resonance imaging with contrast dependent on blood oxygenation," Proc. Natl. Acad. Sci. U.S.A. 87, 9868-9872 (1990). [CrossRef] [PubMed]
  27. G. Fritsch and E. Hitzig, "Über die elektrische Erregbarkheit des Grosshirns," Arch. Anat. Physiol. wissen. Med. 37, 300-332 (1870).
  28. O. Foerster, "Motorische Felder und Bahnen," in Handbuch der Neurologie, O.Bumke and O.Foerster, eds. (Springer, 1936).
  29. G. Ojemann, J. Ojemann, E. Lettich, and M. Berger, "Cortical language localization inleft, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients," J. Neurosurg. 71, 316-326 (1989). [CrossRef] [PubMed]
  30. W. Penfield, "The circulation of the epileptic brain," Res. Publ. Assoc. Res. Nerv. Ment. Dis. 18, 605-637 (1937).
  31. S. S. Kety, "Circulation and metabolism of the human brain," Brain Res. Bull. 50, 415-416 (1999). [CrossRef]
  32. M. E. Raichle, "Functional brain imaging and human brain function," J. Neurosci. 23, 3959-3962 (2003). [PubMed]
  33. N. K. Logothetis, "The underpinnings of the BOLD functional magnetic resonance imaging signal," J. Neurosci. 23, 3963-3971 (2003). [PubMed]
  34. T. A. Woolsey, L. Wei, and J. P. Erinjeri, "Dynamic measurements of local cerebral blood flow: examples from rodent whisker barrel cortex," in Brain Mapping: the Methodology, 2nd ed., A.W.Toga and J.C.Mazziota, eds. (Academic, 2002), pp. 159-173. [CrossRef]
  35. A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, "Functional architecture of cortex revealed by optical imaging of intrinsic signals," Nature 324, 361-364 (1986). [CrossRef] [PubMed]
  36. D. Malonek and A. Grinvald, "Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping," Science 272, 551-554 (1996). [CrossRef] [PubMed]
  37. M. Wong-Riley, "Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry," Brain Res. 171, 11-28 (1979). [CrossRef] [PubMed]
  38. S. B. Cox, T. A. Woolsey, and C. M. Rovainen, "Localized dynamic changes in cortical blood flow with whisker stimulation corresponds to matched vascular and neuronal architecture of rat barrels," J. Cereb. Blood Flow Metab. 13, 899-913 (1993). [CrossRef] [PubMed]
  39. J. A. O'Sullivan, R. E. Blahut, and D. L. Snyder, "Information theoretic image formation," IEEE Trans. Inf. Theory 44, 2094-2123 (1998). [CrossRef]
  40. J. A. O'Sullivan, R. E. Blahut, and D. L. Snyder, "Information theoretic image formation," in Information Theory: 50 Years of Discovery, S.Verdú and S.W.McLaughlin, eds. (IEEE, 2000), pp. 50-79.
  41. D. L. Snyder, T. J. Schulz, and J. A. O'Sullivan, "Deblurring subject to nonnegativity constraints," IEEE Trans. Signal Proces. 40, 1143-1150 (1992). [CrossRef]
  42. I. Csiszár, "Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems," Ann. Stat. 19, 2032-2066 (1991). [CrossRef]
  43. T. A. Woolsey, "Barrel cortex," in http://www.ibro.org/PublowbarMainlowbarDisplay.asp?Main ID=21, (2004).
  44. J. P. Erinjeri, "Mechanisms of cerebrovascular regulation in mouse barrel cortex observed with optical imaging," Ph.D. dissertation (Washington University, St. Louis, Missouri, 2002).
  45. G. G. Blasdel and S. G, "Voltage-sensitive dyes reveal a modular organization in monkey striate cortex," Nature 321, 579-585 (1986). [CrossRef] [PubMed]
  46. M. M. Haglund, G. A. Ojemann, and D. W. Hochman, "Optical imaging of epileptiform and functional activity in human cerebral cortex," Nature 358, 668-671 (1992). [CrossRef] [PubMed]
  47. C. J. Hodge, Jr., R. T. Stevens, H. Newman, J. Merola, and C. Chu, "Identification of functioning cortex using cortical optical imaging," Neurosurgery 41, 1137-1144 (1997). [CrossRef] [PubMed]
  48. N. Pouratian, S. A. Sheth, N. A. Martin, and A. W. Toga, "Shedding light on brain mapping: advances in human optical imaging," Trends Neurosci. 26, 277-282 (2003). [CrossRef] [PubMed]
  49. A. Papoulis and S. U. Pillai, Probability, Random Variables, and Stochastic Processes, 4th ed. (McGraw-Hill, 2002), p. 852.
  50. D. L. Snyder, J. A. O'Sullivan, D. R. Fuhrmann, and W. H. Smith, "Estimation of overlapping spectral signatures from hyperspectral data," in Automatic Target Recognition IX., F. A. Sadjadi, ed., Proc. SPIE 3718, 470-479 (1999).
  51. D. R. Fuhrmann, C. Preza, J. A. O'Sullivan, D. L. Snyder, and W. H. Smith, "Spectrum estimation from quantum-limited interferograms," IEEE Trans. Signal Process. 52, 950-961 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited