OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 13 — May. 1, 2006
  • pp: 3158–3162

Gaussian-reflectivity mirror resonator for a high-power transverse-flow CO2 laser

Dongxiong Ling, Junruo Chen, and Junchang Li  »View Author Affiliations


Applied Optics, Vol. 45, Issue 13, pp. 3158-3162 (2006)
http://dx.doi.org/10.1364/AO.45.003158


View Full Text Article

Enhanced HTML    Acrobat PDF (1353 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A Gaussian-reflectivity mirror resonator is proposed to achieve high-quality laser beams. To analyze the laser fields in a Gaussian-reflectivity mirror resonator, the diffraction integral equations of a Gaussian-reflectivity mirror resonator are converted to the finite-sum matrix equations. Consequently, according to the Fox–Li laser self-reproducing principle, we describe the mode fields and their losses in the proposed resonator as eigenvectors and eigenvalues of a transfer matrix. The conclusion can be drawn from the numerical results that, if a Gaussian-reflectivity mirror is adopted for a plano–concave resonator, a fundamental mode can easily be obtained from a transverse-flow CO2 laser and high-quality laser beams can be expected.

© 2006 Optical Society of America

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(140.3410) Lasers and laser optics : Laser resonators
(140.4130) Lasers and laser optics : Molecular gas lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: July 7, 2005
Revised Manuscript: September 13, 2005
Manuscript Accepted: September 16, 2005

Citation
Dongxiong Ling, Junruo Chen, and Junchang Li, "Gaussian-reflectivity mirror resonator for a high-power transverse-flow CO2 laser," Appl. Opt. 45, 3158-3162 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-13-3158


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Bostanjoglo and N. Hodgson, "Unstable multi-rod Nd:YAG lasers with variable reflectivity mirrors," in High-Power Gas and Solid State Lasers, M. Bohrer, T. Letardi, D. Schuoecker, H. Weber, eds., Proc. SPIE 2206, 459-468 (1994). [CrossRef]
  2. G. Bostanjoglo, N. Hodgson, and H. Weber, "Design of variable reflectivity mirrors and unstable resonators for Nd:YAG lasers with high average power," J. Opt. A Pure Appl. Opt. 3, 497-506 (1994).
  3. C. Pare and P. A. Belanger, "Custom laser resonator using graded-phase mirrors," IEEE J. Quantum Electron. 28, 355-363 (1992). [CrossRef]
  4. R. Van Neste, C. Pare, R. L. Lachance, and P. A. Belanger, "Graded-phase mirror resonator with a super-Gaussian output in a CW-CO2 laser," IEEE J. Quantum Electron. 30, 2663-2670 (1994). [CrossRef]
  5. S. Yu and W. Gu, "Generation of elegant Hermite-Gaussian beams using the graded-phase mirror," J. Opt. A Pure Appl. Opt. 5, 460-463 (2003). [CrossRef]
  6. M. Gerber and T. Graf, "Generation of super-Gaussian modes in Nd:YAG lasers with graded-phase mirrors," in ALT'02 International Conference on Advanced Laser Technologies, H. P. Weber, V. I. Konov, T. Graf, eds., Proc. SPIE 5147, 13-20 (2003). [CrossRef]
  7. N. A. Generalov, N. G. Solov'yov, M. Yu Yakimov, and V. P. Zimakov, "High power industrial CO2 laser 'Lantan-5' with graded reflectivity mirror resonator," J. Opt. A Pure Appl. Opt. 3, 533-540 (1994).
  8. J. Li, J. F. Coutouly, Y. Lu, and J. Merlin, "Correction and quantitative analysis of the output signal of a laser beam analyzer (LBA)," Meas. Sci. Technol. 5, 120-126 (1994). [CrossRef]
  9. S. A. Collins, Jr., "Lens-system diffraction integral written in terms of matrix optics," J. Opt. Soc. Am. 60, 1168-1177 (1970). [CrossRef]
  10. B. Lü, Propagation and Control of High-Power Lasers (National Defense Industry Press, 1999), pp. 77-108.
  11. Z. Wei, R. Wang, and Z. Wang, "Numerical analysis of mode-fields of unstable ring resonators 90° beam rotation," Acta Opt. Sin. 15, 696-702 (1995).
  12. J. Li, J. Merlin, J. Chen, and Z. Fan, "Quick Approximate Calculation on the Transient Temperature Field of Laser Heat Treatment," Chin. J. Lasers B 6, 280-288 (1997).
  13. J. Li, X. Li, Z. Fan, Q. Chen, and J. Chen, "Processing time and the temperature field of laser quenching on material surfaces," in Laser Processing of Materials and Industrial Applications II, S. Deng and S. C. Wang, eds., Proc. SPIE 3550, 190-194 (1998). [CrossRef]
  14. J. Li, X. Li, J. Chen, Z. Fan, and Q. Chen, "Discussion for the semi-infinite medium approximation and the thermal diffusion velocity in laser heat treatment," Chin. J. Lasers B 8, 377-383 (1999).
  15. B. Lü, H. Ma, and B. Zhang, "Propagation properties of cosh-Gaussian beams," Opt. Commun. 164, 165-170 (1999). [CrossRef]
  16. A. Belafhal and M. Ibnchaikh, "Propagation properties of Hermite-cosh-Gaussian laser beams," Opt. Commun. 186, 269-272 (2000). [CrossRef]
  17. A. Piegari and G. Emiliani, "Laser mirrors with variable reflected intensity and uniform phase shift: design and process," Appl. Opt. 32, 5454-5461 (1993). [CrossRef] [PubMed]
  18. R. Medianu, M. L. Pascu, and I. Gutu, "Coating method for variable reflectivity mirrors to be used in high power CW CO2 lasers," J. Opt. A: Pure Appl. Opt. 3, 449-455 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited