OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 13 — May. 1, 2006
  • pp: 3163–3172

Separation between the different fluxes scattered by art glazes: explanation of the special color saturation

Mady Elias and Lionel Simonot  »View Author Affiliations


Applied Optics, Vol. 45, Issue 13, pp. 3163-3172 (2006)
http://dx.doi.org/10.1364/AO.45.003163


View Full Text Article

Enhanced HTML    Acrobat PDF (1490 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In a previous paper, the special visual appearance of art glazes was explained using the auxiliary function method (AFM) for solving the radiative transfer equation. Glazes are made of low concentrated colored scattering centers embedded in a transparent medium and the artist modulates the color by varying the number of glaze layers. A simple model of glazes and the new solving method have both been validated by comparison between flux measurements and modeling. The color of art glazes is analyzed here, and the study shows a spectacular maximum of saturation (purity) of the color that is never reached, to the best of our knowledge, with other techniques, such as pigment mixtures. This phenomenon is explained once more using the AFM that allows separation of the different contributions to the scattered fluxes. It is then shown that, on the one hand, single scattering never induces a maximum of saturation. On the other hand, multiple scattering has a typical increasing and decreasing behavior with an increasing number of glaze layers and thus participates to the maximum of saturation, just as the scattering by the diffuse base layer. A comparison between glazes and pigment mixtures, where the proportion of colored pigments with white pigments varies instead of the number of layers, shows that this maximum of saturation is much smaller with the second technique. To the best of our knowledge, we present a new development of the AFM that allows separation of the different origins of light scattering. We also show that it is possible to determine the optical properties of the scattering centers and of the base layer to create the required visual effect of a scattering medium.

© 2006 Optical Society of America

OCIS Codes
(030.5620) Coherence and statistical optics : Radiative transfer
(290.4210) Scattering : Multiple scattering
(300.6550) Spectroscopy : Spectroscopy, visible
(330.1690) Vision, color, and visual optics : Color

ToC Category:
Scattering

History
Original Manuscript: July 20, 2005
Manuscript Accepted: September 20, 2005

Virtual Issues
Vol. 1, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Mady Elias and Lionel Simonot, "Separation between the different fluxes scattered by art glazes: explanation of the special color saturation," Appl. Opt. 45, 3163-3172 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-13-3163

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited