OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 14 — May. 10, 2006
  • pp: 3243–3252

Growth-dependent refractive index nonlinearity and mean microstructural properties of codeposited composite gadolinia silica films

Naba K. Sahoo, Sudhakar Thakur, and Raj B. Tokas  »View Author Affiliations


Applied Optics, Vol. 45, Issue 14, pp. 3243-3252 (2006)
http://dx.doi.org/10.1364/AO.45.003243


View Full Text Article

Enhanced HTML    Acrobat PDF (2900 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Codeposited gadolinia silica composite films have been probed for their growth-dependent optical and microstructural properties using phase-modulated spectroscopic ellipsometry and scanning probe microscopy. The mean refractive indices were computed using an effective ellipsometric multilayer modeling approach. Most of the composite films have shown growth-induced nonlinear refractive indices to some extent. However, the mean optical properties have depicted interesting trends in the microstructural evolutions. Gadolinia silica composite films in the composition ratio ranging from 90:10 to 70:30 have depicted superior optical as well as morphological properties. Unlike conventional oxide films, these composite films displayed microstructural, spectral refractive index, and bandgap supremacy over the pure films. Such an observation cannot be explained by the empirical Moss law. Atomic force microscopy also revealed a superior morphology in the composite films. The autocorrelation and height–height correlation functional analysis have distinctly supported such superior microstructural features in the composite films, which justifies the supremacy of the optical properties. Such an observation has opened up possibilities to utilize such composite films toward deep- and extreme-ultraviolet spectral regions of the electromagnetic spectrum.

© 2006 Optical Society of America

OCIS Codes
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(160.4670) Materials : Optical materials
(180.5810) Microscopy : Scanning microscopy
(240.0240) Optics at surfaces : Optics at surfaces
(310.0310) Thin films : Thin films
(310.1620) Thin films : Interference coatings

History
Original Manuscript: October 6, 2005
Revised Manuscript: December 14, 2005
Manuscript Accepted: December 14, 2005

Citation
Naba K. Sahoo, Sudhakar Thakur, and Raj B. Tokas, "Growth-dependent refractive index nonlinearity and mean microstructural properties of codeposited composite gadolinia silica films," Appl. Opt. 45, 3243-3252 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-14-3243


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Jacobsson, "Optical properties of a class of inhomogeneous thin films," Opt. Acta 10, 309-323 (1963). [CrossRef]
  2. R. Jacobsson and J. O. Martensson, "Evaporated inhomogeneous thin films," Appl. Opt. 5, 29-34 (1966). [CrossRef] [PubMed]
  3. N. K. Sahoo and A. P. Shapiro, "Process-parameter-dependent optical and structural properties of ZrO2MgO mixed-composite films evaporated from the solid solution," Appl. Opt. 37, 698-718 (1998). [CrossRef]
  4. D. E. Aspnes, "Bounds on allowed values of the effective dielectric function of two-component composites at finite frequencies," Phys Rev. B 25, 1358-1361 (1982). [CrossRef]
  5. W. H. Koo, S. M. Jeoung, S. H. Choi, S. J. Jo, H. K. Baik, S. J. Lee, and K. M. Song, "Optical properties and microstructure of CeO2-SiO2 composite thin films," Thin Solid Films 468, 28-31 (2004). [CrossRef]
  6. A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, and J. A. Dobrowolski, "Influence of small inhomogeneities on the spectral characteristics of single thin films," Appl. Opt. 36, 7188-7198 (1997). [CrossRef]
  7. M. Kar, B. S. Verma, A. Basu, and R. Bhattacharyya, "Modeling of the refractive index and extinction coefficient of binary composite films," Appl. Opt. 40, 6301-6306 (2001). [CrossRef]
  8. H. Chen and W. Z. Shen, "Perspectives in the characteristics and applications of Tauc-Lorentz dielectric function model," Eur. Phys. J. B 43, 503-507 (2005). [CrossRef]
  9. S. H. Wemple and M. DiDomenico, Jr., "Behavior of the electronic dielectric constant in covalent and ionic materials," Phys. Rev. B 3, 1338-1351 (1971). [CrossRef]
  10. H. Lee, I. Y. Kim, S. S. Han, B. S. Bae, M. K. Choi, and I. S. Yang, "Spectroscopic ellipsometry and Raman study of fluorinated nanocrystalline carbon thin films," J. Appl. Phys. 90, 813-818 (2001). [CrossRef]
  11. A. V. Osipov, F. Schmitt, and P. Hess, "Real-time analysis of wetting-layer evolution and island nucleation using spectroscopic ellipsometry with Tauc-Lorentz parametrization," Thin Solid Films 472, 31-36 (2005). [CrossRef]
  12. Y. J. Cho, N. V. Nguyen, C. A. Richter, J. R. Ehrstein, B. H. Lee, and J. C. Lee, "Spectroscopic ellipsometry characterization of high-k dielectric HfO2 thin films and the high-temperature annealing effects on their optical properties," Appl. Phys. Lett. 80, 1249-1251 (2002). [CrossRef]
  13. B. von Blanckenhagen, D. Tonova, and J. Ullmann, "Application of the Tauc-Lorentz formulation to the interband absorption of optical coating materials," Appl. Opt. 41, 3137-3141 (2002). [CrossRef] [PubMed]
  14. J. Price, P. Y. Hung, T. Rhoad, B. Foran, and A. C. Diebold, "Spectroscopic ellipsometry characterization of HfxSiyOz films using the Cody-Lorentz parameterized model," Appl. Phys. Lett. 85, 1701-1703 (2004). [CrossRef]
  15. A. C. Diebold, J. Canterbury, W. Chism, C. Richter, N. Nguyen, J. Ehrstein, and C. Weintraub, "Characterization and production metrology of gate dielectric films: optical models for oxynitrides and high dielectric constant films," Mater. Sci. Semicond. Process. 4, 3-8 (2001). [CrossRef]
  16. G. E. Jellison, Jr., V. I. Merkulov, A. A. Puretzky, D. B. Geohegan, G. Eres, D. H. Lowndes, and J. B. Caughman, "Characterization of thin-film amorphous semiconductors using spectroscopic ellipsometry," Thin Solid Films 377-378, 68-73 (2000). [CrossRef]
  17. G. E. Jellison, Jr. and F. A. Modine, "Parameterization of the optical functions of amorphous materials in the interband region," Appl. Phys. Lett. 69, 371-373 (1996). [CrossRef]
  18. R. Jacobson, "Inhomogeneous and coevaporated homogeneous films for optical applications," in Physics of Thin Films, G.Hass, M.H.Francombe, and R.W.Hoffman, eds. (Academic, 1975), Vol. 8, pp. 51-97.
  19. S. H. Wemple, "Refractive-index behavior of amorphous semiconductors and glasses," Phys. Rev. B 7, 3767-3777 (1973). [CrossRef]
  20. M. A. Gaffar, A. A. El-Fadl, and S. B. Anooz, "Optical absorption spectra and related parameters of ammonium zinc chloride crystal in the antiferroelectric and commensurate phases," Cryst. Res. Technol. 38, 798-810 (2003). [CrossRef]
  21. S. H. Wemple and M. DiDomenico, Jr., "Optical dispersion and the structure of solids," Phys. Rev. Lett. 23, 1156-1160 (1969). [CrossRef]
  22. H. N. Yang, A. Chan, and G. C. Wang, "Examination of the multilevel diffraction model for interface roughness characterization by scanning tunneling microscopy," J. Appl. Phys. 74, 101-106 (1993). [CrossRef]
  23. Y. Chen and W. Huang, "Numerical simulation of the geometrical factors affecting surface roughness measurements by AFM," Meas. Sci. Technol. 15, 2005-2010 (2004). [CrossRef]
  24. Z. J. Liu, N. Jiang, Y. G. Shen, and Y. W. Mai, "Atomic force microscopy study of surface roughening of sputter-deposited TiN thin films," J. Appl. Phys. 92, 3559-3563 (2002). [CrossRef]
  25. C. H. Zhang, Z. J. Liu, K. Y. Li, Y. G. Shen, and J. B. Luo, "Microstructure, surface morphology, and mechanical properties of nanocrystalline TiN/amorphous Si3N4 composite films synthesized by ion beam assisted deposition," J. Appl. Phys. 95, 1460-1467 (2004). [CrossRef]
  26. A. Feldman, X. Ying, and E. N. Farabaugh, "Optical properties of mixed yttria-silica films," Appl. Opt. 28, 5229-5232 (1989). [CrossRef] [PubMed]
  27. A. Feldman, E. N. Farabaugh, W. K. Haller, D. M. Sanders, and R. A. Stempniak, "Modifying structures and properties of optical films by coevaporation," J. Vac. Sci. Technol. A 4, 2969-2974 (1886). [CrossRef]
  28. W. H. Koo, S. M. Jeong, S. H. Choi, H. K. Baik, S. J. Lee, and S. M. Lee, "Relationship between optical properties and microstructure of CeO2-SiO2 composite thin films," J. Vac. Sci. Technol. A 22, 2048-2051 (2004). [CrossRef]
  29. N. M. Ravindra and J. Narayan, "Optical properties of amorphous silicon and silicon dioxide," J. Appl. Phys. 60, 1139-1146 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited