OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 14 — May. 10, 2006
  • pp: 3340–3351

Zigzag slabs for solid-state laser amplifiers: batch fabrication and parasitic oscillation suppression

Arun Kumar Sridharan, Shailendhar Saraf, Supriyo Sinha, and Robert L. Byer  »View Author Affiliations

Applied Optics, Vol. 45, Issue 14, pp. 3340-3351 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (1428 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have developed a 100   W class Nd:YAG master oscillator power amplifier system based in part on an end-pumped zigzag slab power amplifier. This amplifier incorporates parasitic oscillation suppression by using roughened edges and achieves a small-signal gain coefficient ( g 0 l ) of 8.06. We describe a novel technique for suppression of parasitic oscillations using claddings on slab edges that significantly increases g 0 l to 11.63 and increases the single-pass extracted power in a power amplifier by 50 % . Commercial use of these zigzag slab amplifiers has been limited by the time and cost of production. We describe a new batch fabrication technique that improves the quality and significantly reduces the cost of zigzag slabs.

© 2006 Optical Society of America

OCIS Codes
(140.3280) Lasers and laser optics : Laser amplifiers

Original Manuscript: September 30, 2005
Manuscript Accepted: October 30, 2005

Arun Kumar Sridharan, Shailendhar Saraf, Supriyo Sinha, and Robert L. Byer, "Zigzag slabs for solid-state laser amplifiers: batch fabrication and parasitic oscillation suppression," Appl. Opt. 45, 3340-3351 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Wiechmann, T. J. Kane, D. Haserot, F. Adams, G. Truong, and J. Kmetec, "20 W diode-pumped single-frequency Nd:YAG MOPA for the Laser Interferometer Gravitational Wave Observatory," in Conference on Lasers and Electro-Optics, Vol. 6 of OSA Technical Digest Series (Optical Society of America, 1998), p. 432.
  2. LIGO II Conceptual Project Book (1999), www.ligo.org/pdf/M990288-A.pdf.
  3. M. Frede, R. Wilhelm, M. Brendel, C. Fallnich, F. Seifert, B. Willke, and K. Danzmann, "High power fundamental mode Nd:YAG laser with efficient birefringence compensation," Opt. Express 12, 3581-3589 (2004). [CrossRef] [PubMed]
  4. Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, C. E. Chryssou, J. Alvarez-Chavez, and P. W. Turner, "Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power," Opt. Lett. 30, 459-462 (2005). [CrossRef] [PubMed]
  5. W. S. Martin and J. P. Chernoch, "Multiple internal reflection face pumped laser," U.S. patent 3,633,126 (4 January 1972).
  6. A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode pumped high power lasers," Appl. Phys. B 58, 365-372 (1994).
  7. C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, "A 1-kW cw thin disc laser," IEEE J. Sel. Top. Quantum Electron. 6, 650-657 (2000). [CrossRef]
  8. J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, and R. L. Byer, "The slab geometry laser. Part 1: Theory," IEEE J. Quantum Electron. 20, 289-301 (1984). [CrossRef]
  9. R. J. Shine, Jr., A. J. Alfrey, and R. L. Byer, "40 W CW, TEM00-mode, diode-laser-pumped, Nd:YAG miniature-slab laser," Opt. Lett. 20, 459-462 (1995). [CrossRef] [PubMed]
  10. T. Kane, R. Eckardt, and R. Byer, "Reduced thermal focusing and birefringence in zigzag slab geometry crystalline lasers," IEEE J. Quantum Electron. 19, 1351-1354 (1983). [CrossRef]
  11. G. D. Goodno, S. Palese, J. Harkenrider, and H. Injeyan, "High average-power Yb:YAG end-pumped zig-zag slab laser," in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), pp. 2-4.
  12. T. S. Rutherford, W. M. Tulloch, S. Sinha, and R. L. Byer, "Yb:YAG and Nd:YAG edge-pumped slab lasers," Opt. Lett. 26, 986-989 (2001). [CrossRef]
  13. A. D. Farinas, E. K. Gustafson, and R. L. Byer, "Design and characterization of a 5.5 W, cw, injection-locked fiber-coupled, laser-diode-pumped Nd:YAG miniature-slab laser," Opt. Lett. 19, 114-117 (1994). [CrossRef] [PubMed]
  14. G. D. Goodno, H. Komine, S. J.McNaught, B. Weiss, S. Redmond, W. Long, R. Simpson, E. Cheung, D. Howland, P. Epp, M. Weber, M. McClellan, J. Sollee, and H. Injeyan, "19-kW phase-locked MOPA laser array," in Advanced Solid-State Photonics, OSA Trends in Optics and Photonics Series (Optical Society of America, 2006), paper MA2.
  15. S. Saraf, S. Sinha, A. K. Sridharan, and R. L. Byer, "100 W, single frequency, low-noise, diffraction-limited beam from an Nd:YAG end-pumped slab MOPA for LIGO," in Advanced Solid-State Photonics (Nineteenth Topical Meeting and Tabletop Exhibit), Postdeadline Proceedings, Vol. 94 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004).
  16. B. Willke, N. Uehara, E. K. Gustafson, R. L. Byer, P. King, S. Seel, and R. L. Savage, Jr., "Spatial and temporal filtering of a 10-W Nd:YAG laser with a Fabry-Perot ring-cavity premode cleaner," Opt. Lett. 23, 1704-1706 (1998). [CrossRef]
  17. S. Saraf, K. Urbanek, R. L. Byer, and P. J. King, "Quantum noise measurements in a continuous-wave laser-diode-pumped Nd:YAG saturated amplifier," Opt. Lett. 30, 1195-1197 (2005). [CrossRef] [PubMed]
  18. A. E. Siegman, Lasers (University Science, 1987).
  19. Y. Chen, B. Chen, M. K. R. Patel, A. Kar, and M. Bass, "Calculation of thermal gradient induced stress birefringence in slab lasers. II," IEEE J. Quantum Electron. 40, 917-927 (2004). [CrossRef]
  20. Y. Chen, B. Chen, M. K. R. Patel, and M. Bass, "Calculation of thermal gradient induced stress birefringence in slab lasers. I," IEEE J. Quantum Electron. 40, 909-916 (2004). [CrossRef]
  21. J. Eggleston, L. M. Frantz, and H. Injeyan, "Derivation of the Franz-Nodvik equation for zig-zag optical path, slab geometry laser amplifiers," IEEE J. Quantum Electron. 25, 1855-1862 (1989). [CrossRef]
  22. L. M. Franz and J. S. Nodvik, "Theory of pulse propagation in a laser amplifier," J. Appl. Phys. 34, 2346-2349 (1963).
  23. T. Y. Fan, "Heat generation in Nd:YAG and Yb:YAG," IEEE J. Quantum Electron. 29, 1457-1459 (1993). [CrossRef]
  24. J. Fryer, Microcooling Concepts, Inc., 7522 Slater Ave., Suite 122, Huntington Beach, Calif. 92647 (custom design).
  25. T. J. Kane and R. L. Byer, "62-dB-gain multiple-pass slab geometry Nd:YAG amplifier," Opt. Lett. 11, 216-219 (1986). [CrossRef] [PubMed]
  26. W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer-Verlag, 1999).
  27. D. C. Brown, D. P. Benfey, W. J. Gehm, D. H. Holmes, and K. K. Lee, "Parasitic oscillations and amplified spontaneous emission in face-pumped total internal reflection lasers," Proc. SPIE 736, 74-83 (1987).
  28. T. Rutherford, "An edge-pumped Yb:YAG laser and phased array resonator," Ph.D. dissertation (Stanford University, 2001).
  29. W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, and S. E. Stokowski, "Spectroscopic, optical, and thermomechanical properties of neodymium-and chromium-doped gadolinium scandium gallium garnets," J. Opt. Soc. Am. B 3, 102-114 (1986). [CrossRef]
  30. H. Meissner, "Composites made from single crystal substances," U.S. patent 5 ,441,803 (15 August 1995).
  31. D. Z. Gwo, "Hydroxide-catalyzed bonding," U.S. patent 6,548,176 (15 April 2003).
  32. D. Z. Gwo, "Ultra precision and reliable bonding method," U.S. patent 6,284,085 (4 September 2001).
  33. N. Traggis, Precision Photonics Corporation, Boulder, Colo. (personal communication, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited