OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 15 — May. 20, 2006
  • pp: 3430–3441

Zoom lens design for a novel imaging spectrometer that controls spatial and spectral resolution individually

Jin Choi, T. H. Kim, H. J. Kong, and Jong Ung Lee  »View Author Affiliations


Applied Optics, Vol. 45, Issue 15, pp. 3430-3441 (2006)
http://dx.doi.org/10.1364/AO.45.003430


View Full Text Article

Enhanced HTML    Acrobat PDF (292 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel imaging spectrometer can individually control spatial and spectral resolution by using zoom lenses as the foreoptics of the system and a focusing lens. By varying the focal length we can use the focusing lens to change the spatial and spectral dimensions; with the foreoptics, however, we can change only the spatial dimension. Therefore the spectral resolution and the spectral range are affected by the zoom ratio of the focusing lens, whereas the spatial resolution and the field of view are affected by the multiplication of the zoom ratios of the foreoptics and the focusing lens. By properly combining two zoom ratios, we can control the spectral resolution with a fixed spatial resolution or the spatial resolution with a fixed spectral resolution. For an imaging spectrometer with this novel zooming function, we used the lens module method and third-order aberration theory to design an initial four-group zoom system with an external entrance pupil for the focusing lens. Furthermore, using the optical design software CODE V, we obtained an optimized zoom lens with a focal-length range of 50 to 150   mm . Finally, the zoom system with its transmission grating in the Littrow configuration performs satisfactorily as the focusing lens of an imaging spectrometer in the wavelength range 450–900 nm.

© 2006 Optical Society of America

OCIS Codes
(080.3620) Geometric optics : Lens system design
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(220.2740) Optical design and fabrication : Geometric optical design

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: August 31, 2005
Revised Manuscript: December 26, 2005
Manuscript Accepted: December 28, 2005

Citation
Jin Choi, T. H. Kim, H. J. Kong, and Jong Ung Lee, "Zoom lens design for a novel imaging spectrometer that controls spatial and spectral resolution individually," Appl. Opt. 45, 3430-3441 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-15-3430


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, "Imaging spectrometry for Earth remote sensing," Science 228, 1147-1153 (1985).
  2. A. F. H. Goetz, J. B. Wellman, and W. L. Barnes, "Optical remote sensing of the Earth," Proc. IEEE 73, 950-969 (1985).
  3. R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, "Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS)," Remote Sens. Environ. 65, 227-248 (1998). [CrossRef]
  4. C. T. Willoughby, M. A. Folkman, and M. A. Figueroa, "Application of hyperspectral imaging spectrometer systems to industrial inspection," in Three-Dimensional and Unconventional Imaging for Industrial Inspection and Metrology, M.R.Descour, K.G.Harding, and D.J.Svetkoff, eds., Proc. SPIE 2599, 264-272 (1996).
  5. F. D. Van Der Meer and S. M. De Jong, Imaging Spectrometry (Kluwer Academic, 2001).
  6. J. Fisher, M. Baumback, J. Bowles, J. Grossman, and J. Antoniades, "Comparison of low-cost hyperspectral sensors," in Imaging Spectrometry IV, M.R.Descour and S.S.Shen, eds., Proc. SPIE 3438, 23-30 (1998).
  7. P. Mouroulis and M. M. McKerns, "Pushbroom imaging spectrometer with high spectroscopic data fidelity: experimental demonstration," Opt. Eng. 39, 808-816 (2000). [CrossRef]
  8. M. Topping, J. Pfeiffer, A. Sparks, K. T. C. Jim, and D. Yoon, "Advanced airborne hyperspectral imaging system (AAHIS)," in Imaging Spectrometry VIII, S.S.Shen, eds., Proc. SPIE 4816, 1-11 (2002).
  9. C. O. Davis, J. Bowles, R. A. Leathers, D. Korwan, T. V. Downes, W. A. Snyder, W. J. Rhea, W. Chen, J. Fisher, W. P. Bissett, and R. A. Reisse, "Ocean PHILLS hyperspectral imager: design, characterization, and calibration," Opt. Express 10, 210-221 (2002).
  10. J. S. Pearlman, P. S. Barry, C. C. Segal, J. Shepanski, D. Beiso, and S. L. Carman, "Hyperion, a space-based imaging spectrometer," IEEE Trans. Geosci. Remote Sens. 41, 1160-1173 (2003). [CrossRef]
  11. M. J. Barnsley, J. J. Settle, M. A. Cutter, D. R. Lobb, and F. Teston, "The PROBA/CHRIS mission: a low-cost smallsat for hyperspectral multiangle observations of the Earth surface and atmosphere," IEEE Trans. Geosci. Remote Sens. 42, 1512-1520 (2004). [CrossRef]
  12. G. Ulbrich, R. Meynart, and J. Nieke, "APEX—airborne prism experiment: the realization phase of an airborne hyperspectral imager," in Sensors, Systems, and Next-Generation Satellites VIII, R.Meynart, S.P.Neeck, and H.Shimoda, eds., Proc. SPIE 5570, 453-459 (2004).
  13. D. Lobb, "Design of a spectrometer system for measurement on Earth atmosphere from geostationary orbit," in Optical Design and Engineering, L.Mazuray, P.J.Rogers, and R.Wartmann, eds., Proc. SPIE 5249, 191-202 (2004).
  14. M. R. Descour, C. E. Volin, E. L. Dereniak, K. J. Thome, A. B. Schumacher, D. W. Wilson, and P. D. Maker, "Demonstration of a high-speed nonscanning imaging spectrometer," Opt. Lett. 22, 1271-1273 (1997).
  15. C. Feng and A. Ahmad, "Design and modeling of a compact imaging spectrometer," Opt. Eng. 34, 3217-3220 (1995). [CrossRef]
  16. T. Vaarala, M. Aikio, and H. Keranen, "Advanced prism-grating-prism imaging spectrograph in online industrial applications," in New Image Processing Techniques and Applications: Algorithms, Methods, and Components II, P.Réfrégier and R.-J.Ahlers, eds., Proc. SPIE 3101, 322-330 (1997).
  17. R. G. Sellar and G. D. Boreman, "Classification of imaging spectrometers for remote sensing applications," Opt. Eng. 44, 013602 (2005). [CrossRef]
  18. R. G. Sellar and G. D. Boreman, "Comparison of relative signal-to-noise ratios of different classes of imaging spectrometer," Appl. Opt. 44, 1614-1624 (2005). [CrossRef]
  19. K. H. Elliott, "A novel zoom-lens spectrograph for a small astronomical telescope," Mon. Not. R. Astron. Soc. 281, 158-162 (1996).
  20. Scientific Imaging Technologies (SITe), http://www.site-inc.com.
  21. S. C. Park and R. R. Shannon, "Zoom lens design using lens modules," Opt. Eng. 35, 1668-1675 (1996). [CrossRef]
  22. Optical Research Associates, "CODE V Reference Manual, Version 9.40" (Optical Research Associates, Pasadena, Calif., 2003).
  23. H. H. Hopkins, Wave Theory of Aberrations (Oxford U. Press, 1950).
  24. H. H. Hopkins and V. V. Rao, "The systematic design of two-component objectives," Opt. Acta. 17, 497-514 (1970).
  25. J. Tesar, "Using small glass catalogs," Opt. Eng. 39, 1816-1821 (2000). [CrossRef]
  26. R. Kingslake, Lens Design Fundamentals (Academic, 1978).
  27. Schott, Glass http://www.schott.com.
  28. W. T. Welford, Aberrations of the Symmetrical Optical System (Academic, 1974).
  29. Y. Matsui, "Use of calcium fluoride for zoom lenses of high quality for cinematography and television," J. SMPTE 80, 22-24 (1971).
  30. M. M. Roth, A. Kelz, T. Fechner, T. Hahn, S.-M. Bauer, T. Becker, P. Böhm, L. Christensen, F. Dionies, J. Paschke, E. Popow, and D. Wolter, "PMAS: the Potsdam multi-aperture spectrophotometer. I. Design, manufacture, and performance," Publ. Astron. Soc. Pac. 117, 620-642 (2005). [CrossRef]
  31. P. Mouroulis, R. O. Green, and T. G. Chrien, "Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information," Appl. Opt. 39, 2210-2220 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited