OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 15 — May. 20, 2006
  • pp: 3561–3576

Algorithm improvement and validation of National Institute for Environmental Studies ozone differential absorption lidar at the Tsukuba Network for Detection of Stratospheric Change complementary station

Chan Bong Park, Hideaki Nakane, Nobuo Sugimoto, Ichiro Matsui, Yasuhiro Sasano, Yasumi Fujinuma, Izumi Ikeuchi, Jun-Ichi Kurokawa, and Noritaka Furuhashi  »View Author Affiliations

Applied Optics, Vol. 45, Issue 15, pp. 3561-3576 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (3210 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recently, a data processing and retrieval algorithm (version 2) for ozone, aerosol, and temperature lidar measurements was developed for an ozone lidar system at the National Institute for Environmental Studies (NIES) in Tsukuba ( 36 ° N,140   ° E ) , Japan. A method for obtaining the aerosol boundary altitude and the aerosol extinction-to-backscatter ratio in the version 2 algorithm enables a more accurate determination of the vertical profiles of aerosols and a more accurate correction of the systematic errors caused by aerosols in the vertical profile of ozone. Improvements in signal processing are incorporated for the correction of systematic errors such as the signal-induced noise and the dead-time effect. The mean vertical ozone profiles of the NIES ozone lidar were compared with those of the Stratospheric Aerosol and Gas Experiment II (SAGE II); they agreed well within a 5 % relative difference in the 20 40   km altitude range and within 10% up to 45   km . The long-term variations in the NIES ozone lidar also showed good coincidence with the ozonesonde and SAGE II at 20, 25, 30, and 35   km . The temperatures retrieved from the NIES ozone lidar and those given by the National Center for Environmental Prediction agreed within 7   K in the 35 50   km range.

© 2006 Optical Society of America

OCIS Codes
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar
(280.3640) Remote sensing and sensors : Lidar

ToC Category:
Remote Sensing

Original Manuscript: July 20, 2005
Revised Manuscript: December 20, 2005
Manuscript Accepted: December 26, 2005

Chan Bong Park, Hideaki Nakane, Nobuo Sugimoto, Ichiro Matsui, Yasuhiro Sasano, Yasumi Fujinuma, Izumi Ikeuchi, Jun-Ichi Kurokawa, and Noritaka Furuhashi, "Algorithm improvement and validation of National Institute for Environmental Studies ozone differential absorption lidar at the Tsukuba Network for Detection of Stratospheric Change complementary station," Appl. Opt. 45, 3561-3576 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. See NDSC website at http://www.ndsc.ncep.noaa.gov/ (2002).
  2. S. McDermid, S. M. Godin, and L. S. Lindqvist, "Ground-based laser DIAL system for long-term measurements of stratospheric ozone," Appl. Opt. 29, 3603-3613 (1990). [CrossRef] [PubMed]
  3. T. J. McGee, D. Whiteman, R. Ferrare, J. J. Butler, and J. F. Burris, "STORZ LITE: Stratospheric Ozone Lidar Trailer Experiment," Opt. Eng. 30, 31-39 (1991). [CrossRef]
  4. S. Godin, G. Megie, and J. Pelon, "Systematic lidar measurements of the stratospheric ozone vertical distribution," Geophys. Res. Lett. 16, 547-550 (1989). [CrossRef]
  5. H. Nakane, Y. Sasano, S. Hayashida-Amano, N. Sugimoto, I. Matsui, and A. Minato, "Comparison of ozone profiles obtained with NIES DIAL and SAGE II measurements," J. Meteorol. Soc. Jpn. 71, 153-159 (1992).
  6. H. Nakane, S. Hayashida, Y. Sasano, N. Sugimoto, I. Matsui, and A. Minato, "Vertical profiles of temperature and ozone observed during DYANA campaign with NIES ozone lidar system at Tsukuba," J. Geomagn. Geoelectr. 44, 1071-1083 (1992). [CrossRef]
  7. S. P. Namboothiri, N. Sugimoto, H. Nakane, I. Matsui, and Y. Murayama, "Rayleigh lidar observations of temperature over Tsukuba: winter thermal structure and comparison studies," Earth , Planets Space 51, 825-832 (1999).
  8. S. Godin, A. I. Carswell, D. P. Donovan, H. Claude, W. Steinbrecht, I. S. McDermid, T. J. McGee, M. R. Gross, H. Nakane, D. P. J. Swart, H. B. Bergwerff, O. Uchino, P. Gathen, and R. Neuber, "Ozone differential absorption lidar algorithm intercomparison," Appl. Opt. 38, 6225-6235 (1999). [CrossRef]
  9. Y. Iikura, N. Sugimoto, Y. Sasano, and H. Shimizu, "Improvement on lidar data processing for stratospheric aerosol measurements," Appl. Opt. 26, 5299-5306 (1987). [CrossRef]
  10. D. P. Donovan, J. A. Whiteway, and A. I. Carswell, "Correction for nonlinear photon-counting effects in lidar systems," Appl. Opt. 32, 6742-6753 (1993). [CrossRef] [PubMed]
  11. D. N. Whiteman, S. H. Melfi, and R. A. Ferrare, "Raman lidar system for the measurement of water vapor and aerosols in the Earth's atmosphere," Appl. Opt. 31, 3068-3082 (1992). [CrossRef] [PubMed]
  12. R. D. Evans, The Atomic Nucleus (McGraw-Hill, 1955), p. 785.
  13. T. J. McGee, M. R. Gross, J. J. Butler, and P. E. Kimvilakani, "Improved stratospheric ozone lidar," Opt. Eng. 34, 1421-1430 (1995). [CrossRef]
  14. H. S. Lee, G. K. Schwemmer, C. L. Corb, M. Dombrowski, and C. Prasad, "Gated photomultiplier response characterization for DIAL measurements," Appl. Opt. 29, 3303-3315 (1990). [CrossRef] [PubMed]
  15. F. Cairo, F. Congeduti, M. Poli, S. Centurioni, and G. D. Donfrancesco, "A survey of the signal-induced noise in photomultiplier detection of wide dynamics luminous signals," Rev. Sci. Instrum. 67, 3274-3280 (1996). [CrossRef]
  16. E. L. Fleming, S. Chandra, J. J. Barnett, and M. Corney, "Zonal mean temperature, pressure, zonal wind, and geopotential height as functions of latitude," Adv. Space Res. 10, 1211-1259 (1990). [CrossRef]
  17. G. W. Snedecor and W. G. Cochran, Statistical Methods, 6th ed. (Iowa State University Press, 1968), Chap. 6.
  18. M. L. Chanin and A. Hauchecorne, "Lidar observation of gravity and tidal waves in the stratosphere and mesosphere," J. Geophys. Res. 86, 9715-9721 (1981). [CrossRef]
  19. J. D. Klett, "Stable analytical inversion solution for processing lidar returns," Appl. Opt. 20, 211-220 (1981). [CrossRef] [PubMed]
  20. J. D. Klett, "Lidar inversion with variable backscatter/extinction ratios," Appl. Opt. 24, 1638-1643 (1985). [CrossRef] [PubMed]
  21. F. G. Fernald, B. M. Herman, and J. A. Reagan, "Determination of aerosol height distribution by lidar," J. Appl. Meteorol. 11, 482-489 (1972). [CrossRef]
  22. F. G. Fernald, "Analysis of atmospheric lidar observations: some comments," Appl. Opt. 23, 652-653 (1984). [CrossRef] [PubMed]
  23. J. P. Thayer, N. B. Nielsen, R. E. Warren, C. J. Heinselman, and J. Sohn, "Rayleigh lidar system for middle atmosphere research in the arctic," Opt. Eng. 36, 2045-2061 (1997). [CrossRef]
  24. Y. Sasano and H. Nakane, "Significance of the extinction/backscattering ratio and the boundary value term in the solution for the two-component lidar equation," Appl. Opt. 23, 11-13 (1984). [CrossRef]
  25. V. A. Kovalev, " Sensitivity of the lidar solution to errors of the aerosol backscatter-to-extinction ratio: influence of a monotonic change in the aerosol extinction coefficient," Appl. Opt. 34, 3457-3462 (1995). [CrossRef] [PubMed]
  26. T. Deshler, B. J. Johnson, and W. R. Rozier, "Balloonborne measurements of Pinatubo aerosols during 1991 and 1992 at 41°N: vertical profiles, size distribution, and volatility," Geophys. Res. Lett. 20, 1435-1438 (1993). [CrossRef]
  27. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, and K. D. Evans, "Raman lidar measurements of the Pinatubo aerosols over southeastern Kansas during November-December 1991," Geophys. Res. Lett. 19, 1599-1602 (1992). [CrossRef]
  28. A. Ansmann, U. Wandinger, and C. Weitkamp, "One-year observations of Mount-Pinatubo aerosol with an advanced Raman lidar over Germany at 53.5°N," Geophys. Res. Lett. 20, 711-714 (1993). [CrossRef]
  29. F. Congeduti, J. DeLuisi, and T. Defoor, "Optical extinction properties of volcanic stratospheric aerosol derived from ground-based lidar and sun-photometer measurements," J. Geophys. Res. 103D, 13893-13902 (1998). [CrossRef]
  30. U. Wandinger, A. Ansmann, J. Reichardt, and T. Deshler, "Determination of stratospheric aerosol microphysical properties from independent extinction and backscattering measurements with Raman lidar," Appl. Opt. 34, 8315-8329 (1995). [CrossRef] [PubMed]
  31. H. Jager and D. Hofmann, "Midlatitude lidar backscatter to mass, area, and extinction conversion model based on in situ measurements from 1980 to 1987," Appl. Opt. 30, 127-138 (1991). [CrossRef] [PubMed]
  32. H. Jager, T. Deshler, and D. Hofman, "Midlatitude lidar backscatter conversions based on balloon aerosol measurements," Geophys. Res. Lett. 22, 1729-1732 (1995). [CrossRef]
  33. M. R. Gross, T. J. McGee, U. N. Singh, and P. Kimvilakani, "Measurements of stratospheric aerosols with a combined elastic-Raman-backscatter lidar," Appl. Opt. 34, 6915-6924 (1995). [CrossRef] [PubMed]
  34. R. M. Schotland, "Errors in the lidar measurements of atmospheric gases by differential absorption," J. Appl. Meteorol. 13, 71-77 (1974). [CrossRef]
  35. W. Steinbrecht and A. I. Carswell, "Evaluation of the effect of Mount Pinatubo aerosol on differential absorption lidar measurements of stratospheric ozone," J. Geophys. Res. 100, 1215-1233 (1995). [CrossRef]
  36. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, "Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar," Appl. Opt. 31, 7113-7131 (1992). [CrossRef] [PubMed]
  37. R. L. McKenzie, J. M. Rosen, N. T. Kjome, T. J. McGee, M. R. Gross, U. N. Singh, R. F. Ferrare, P. Kimvilakani, O. Uchino, and T. Nagai, "Multi-wavelength profiles of aerosol backscatter over Lauder, New Zealand, 24 November 1992," Geophys. Res. Lett. 21, 789-792 (1994). [CrossRef]
  38. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in Fortran 77: The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, 1992), Vol. 1.
  39. S. McDermid, S. M. Godin, R. A. Barnes, C. L. Parsons, A. Torres, M. P. McCormick, W. P. Chu, P. Wang, J. Butler, P. Newman, J. Burris, R. Ferrare, D. Whiteman, and T. J. McGee, "Comparison of ozone profiles from ground-based lidar, ECC balloon sonde, ROCOZ-A rocket sonde, and SAGE II satellite measurements," J. Geophys. Res. 95, 10037-10042 (1990). [CrossRef]
  40. J. Lu, V. A. Mohnen, G. K. Yue, and H. Jaeger, "Intercomparison of multi-platform stratospheric aerosol and ozone observations," J. Geophys. Res. 102, 16127-16136 (1997). [CrossRef]
  41. S. McDermid, J. B. Bergwerff, G. Bodeker, I. S. Boyd, E. J. Brinksma, B. J. Connor, R. Farmer, M. R. Gross, P. Kimvilakani, W. A. Matthews, T. J. McGee, F. T. Ormel, A. Parrish, U. Singh, D. P. J. Swart, J. J. Tsou, P. H. Wang, and J. Zawodny, "OPAL: network for the detection of stratospheric change ozone profiler assessment at Lauder, New Zealand. I. Blind intercomparisons," J. Geophys. Res. 103, 28683-28692 (1998). [CrossRef]
  42. D. M. Cunnold, W. P. Chu, R. A. Barnes, M. P. McCormick, and R. E. Veiga, "Validation of SAGE II ozone measurement," J. Geophys. Res. 94, 8447-8460 (1989). [CrossRef]
  43. L. Pan, S. Solomon, W. J. Randel, J. F. Lamarque, P. Hess, J. C. Gille, E. W. Chiou, and P. McCormick, "Hemispheric asymmetry and seasonal variations of the lowermost stratospheric water vapor and ozone derived from SAGE II data," J. Geophys. Res. 102, 28177-28184 (1997). [CrossRef]
  44. J. Lu, V. A. Mohnen, G. K. Yue, R. J. Atkinson, and W. A. Matthews, " Interomparison of stratospheric ozone profiles obtained by Stratospheric Aerosol and Gas Experiment II, Halogen Occultation Experiment, and ozonesondes in 1994-1995," J. Geophys. Res. 102, 16137-16144 (1997). [CrossRef]
  45. H. J. Wang, D. M. Cunnold, L. W. Thomason, J. M. Zawodny, and G. E. Bodeker, "Assessment of SAGE version 6.1 ozone data quality," J. Geophys. Res. 107, doi: (2002). [CrossRef]
  46. C. Lu, G. K. Yue, G. L. Manney, E. D. Joseph, and V. A. Mohnen, "Variability of stratospheric ozone derived from 1991-2001 SAGE II and HALOE measurements," presented at the American Geophysical Union Spring Meeting, 28-31 May 2002, Washington D.C., abstract A42B-07.
  47. L. W. Thomas, SAGE II, http://www-sage2.larc.nasa.gov/ (2004).
  48. J. R. Spackman, E. M. Weinstock, and J. G. Anderson, "Export of ozone-poor air from the lower tropical stratosphere to mid-latitudes," presented at the American Geophysical Union Spring Meeting, 28-31 May 2002, Washington D.C., abstract A22D-04.
  49. H. Nakane, Polar vortex forecast, http://www-cger2.nies.go.jp/new/analysis-e/pv/indexlowbarstras.html (2002)
  50. J. E. Rosenfield, D. B. Considine, P. E. Meade, J. T. Bacmeister, C. H. Jackman, and M. R. Schoeberl, "Stratospheric effect of Mount Pinatubo aerosol studies with a coupled two-dimensional method," J. Geophys. Res. 102, 3649-3670 (1997). [CrossRef]
  51. D. J. Hofmann, S. J. Oltmans, J. M. Harris, W. D. Komhyr, J. A. Lathrop, T. Defoor, and D. Kuniyuki, "Ozonesonde measurements at Hilo, Hawaii following the eruption of Mt. Pinatubo," Geophys. Res. Lett. 20, 1555-1558 (1993). [CrossRef]
  52. W. B. Grant, E. V. Browell, J. Fishman, V. G. Brackett, R. E. Veiga, D. Nganga, A. Minga, B. Cros, C. F. Butler, M. A. Fenn, C. S. Long, and L. L. Stowe, "Aerosol-associated changes in tropical stratospheric ozone following the eruption of Mount Pinatubo," J. Geophys. Res. 99, 8197-8211 (1994). [CrossRef]
  53. T. J. McGee, M. Gross, R. Ferrare, W. Heaps, and U. Singh, "Raman DIAL measurements of stratospheric ozone in the presence of volcanic aerosols," Geophys. Res. Lett. 20, 955-958 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited