OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 15 — May. 20, 2006
  • pp: 3605–3619

Spectral variation of the volume scattering function measured over the full range of scattering angles in a coastal environment

Malik Chami, Eugeny B. Shybanov, Gueorgui A. Khomenko, Michael E.-G. Lee, Oleg V. Martynov, and Gennady K. Korotaev  »View Author Affiliations


Applied Optics, Vol. 45, Issue 15, pp. 3605-3619 (2006)
http://dx.doi.org/10.1364/AO.45.003605


View Full Text Article

Enhanced HTML    Acrobat PDF (334 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The spectral volume scattering function (VSF) was measured in a coastal environment from 0.6° to 177.3° by use of a recently developed device. The spectral variations of the particulate VSF and phase function (i.e., ratio of the VSF to the scattering coefficient) were examined as a function of the scattering angle. The angular dependency of both VSF and phase- function spectra was highly sensitive to the absorption and to the size distribution of the particles. As a result, the use of spectrally neutral phase functions in radiative-transfer modeling is questioned.

© 2006 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(290.1350) Scattering : Backscattering
(290.5850) Scattering : Scattering, particles

ToC Category:
Scattering

History
Original Manuscript: April 22, 2005
Revised Manuscript: October 22, 2005
Manuscript Accepted: October 24, 2005

Citation
Malik Chami, Eugeny B. Shybanov, Gueorgui A. Khomenko, Michael E.-G. Lee, Oleg V. Martynov, and Gennady K. Korotaev, "Spectral variation of the volume scattering function measured over the full range of scattering angles in a coastal environment," Appl. Opt. 45, 3605-3619 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-15-3605


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, "A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters," J. Geophys. Res. 106, C7, 14,129-14,142 (2001). [CrossRef]
  2. O. B. Brown and H. R. Gordon, "Comment on method for the determination of the refractive index of particles suspended in the ocean," J. Opt. Soc. Am. 63, 1616-1617 (1973). [CrossRef]
  3. O. B. Brown and H. R. Gordon, "Size-refractive index distribution of clear coastal water particulates from light scattering," Appl. Opt. 13, 2874-2881 (1974). [CrossRef] [PubMed]
  4. J. R. V. Zaneveld and H. Pak, "The determination of the index of refraction of particles suspended in the ocean," J. Opt. Soc. Am. 63, 321-324 (1973). [CrossRef]
  5. J. R. V. Zaneveld, D. M. Roach, and H. Pak, "The determination of the index of refraction distribution of oceanic particulates," J. Geophys. Res. 79, 4091-4095 (1974). [CrossRef]
  6. D. M. Roach, "Determination of refractive index distributions for oceanic particulates," Ph.D. dissertation (Oregon State University, 1974).
  7. R. W. Spinrad and J. F. Brown, "Relative real refractive index of marine microorganisms: a technique for flow cytometric estimation," Appl. Opt. 25, 1930-1934 (1986). [CrossRef] [PubMed]
  8. S. G. Ackleson and R. W. Spinrad, "Size and refractive index of individual marine particulates: a flow cytometric approach," Appl. Opt. 27, 1270-1277 (1983). [CrossRef]
  9. A. Bricaud, C. Roesler, and J. R. V. Zaneveld, "In situ methods for measuring the inherent optical properties of ocean waters," Limnol. Oceanogr. 40, 393-410 (1995). [CrossRef]
  10. E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, "Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution," J. Geophys. Res. 109, C01014, doi: (2004). [CrossRef]
  11. X. Zhang, M. Lewis, M. E.-G. Lee, B. Johnson, and G. K. Korotaev, "The volume scattering function of natural bubble populations," Limnol. Oceanogr. 47, 1273-1282 (2002). [CrossRef]
  12. X. Zhang, M. Lewis, W. P. Bissett, B. Johnson, and D. Kohler, "Optical influence of ship wakes," Appl. Opt. 43, 3122-3132 (2004). [CrossRef] [PubMed]
  13. O. S. Ulloa, S. Sathyendranath, and T. Platt, "Effect of the particle-size distribution on the backscattering ratio in seawater," Appl. Opt. 33, 7070-7077 (1994). [CrossRef] [PubMed]
  14. J. E. Tyler and W. H. Richardson, "Nephelometer for the measurement of volume scattering in situ," J. Opt. Soc. Am. 48, 354-357 (1958). [CrossRef]
  15. T. J. Petzold, "Volume scattering functions for selected ocean waters," Tech. Rep. 72-28 (Scripps Institute of Oceanography, 1972).
  16. G. Kullenberg, "Observed and computed scattering functions," in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds (Academic, 1974), pp. 25-49.
  17. A. Morel, "Diffusion de la lumière par les eaux de mer: résulats expérimentaux et approche théorique," in Optics of the Sea, NATO AGARD, Lecture Series 61 (NATO Advisory Group for Aerospace Research and Development, 1973), pp. 3-1-1-3-1-76.
  18. C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinsersman, K. Stamnes, and R. H. Stavn, "Comparison of numerical models for computing underwater light fields," Appl. Opt. 32, 7484-7505 (1993). [CrossRef]
  19. K. L. Carder, R. D. Tomlinson, and G. F. Beardsley, Jr., "A technique for the estimation of indices of refraction of marine phytoplankters," Limnol. Oceanogr. 17, 833-839 (1972). [CrossRef]
  20. E. Aas, "Refractive index of phytoplankton derived from its metabolite composition," J. Plankton Res. 18, 2223-2249 (1996). [CrossRef]
  21. D. Stramski, A. Morel, and A. Bricaud, "Modeling the light attenuation and scattering by spherical phytoplankton cells: a retrieval of the bulk refractive index," Appl. Opt. 27, 3954-3956 (1988). [CrossRef] [PubMed]
  22. K. L. Carder, P. R. Betzer, and D. W. Eggimann, "Physical, chemical and optical measures of suspended particle concentrations: their intercomparison and application to the West African shelf," in Suspended Solids in Water, R.J.Gibbs, ed. (Plenum, 1974), pp. 173-193.
  23. D. R. Lide, "Physical and optical properties of minerals," in CRC Handbook of Chemistry and Physics, 77th ed. D.R.Lide, ed. (CRC, 1997), pp. 4.130-4.136.
  24. H. Bader, "The hyperbolic distribution of particles sizes," J. Geophys. Res. 75, 2822-2830 (1970). [CrossRef]
  25. R. W. SheldonA. Prakash, and W. H. Sutcliffe, Jr., "The size distribution of particles in the ocean," Limnol. Oceanogr. 17, 327-340 (1972). [CrossRef]
  26. J. C. Kitchen, "Particle size distribution and the vertical distribution of suspended matter in the upwelling region off Oregon," Rep. 77-10 (Oregon State University, 1977).
  27. O. V. Kopelevich, "Small parameter model of optical properties of sea water," in Physical Ocean Optics, Vol. 1 of Ocean Optics, A.S.Monin, ed. (Nauka, Moscow, 1983; in Russian), Chap. 8, pp. 208-234.
  28. V. I. Haltrin and G. Kattawar, "Light fields with Raman scattering and fluorescence in sea water," Tech. Rep. (Texas A&M U. Press 1991).
  29. D. Risovic, "Two-component model of sea particle size distribution," Deep-Sea Res. Part I 40, 1459-1473 (1993). [CrossRef]
  30. R. A. Maffione and D. R. Dana, "Instruments and methods for measuring the backward-scattering coefficient of ocean waters," Appl. Opt. 36, 6057-6067 (1997). [CrossRef] [PubMed]
  31. M. E. Lee and M. R. Lewis, "A new method for the measurement of the optical volume scattering function in the upper ocean," J. Atmos. Ocean. Technol. 20, 563-571 (2003). [CrossRef]
  32. M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E.-G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, "Optical properties of the particles in the Crimea coastal waters (Black Sea)," J. Geophys. Res. (to be published).
  33. G. S. Fargion and J. L. Mueller, "Ocean optics protocols for satellite ocean color sensor validation, revision 2," NASA Tech. Memo. 2000-209966 (NASA Goddard Space Flight Center, 2000).
  34. O. Holm-Hansen, C. J. Lorenzen, R. W. Holmes, and J. D. H. Strickland, "Fluorometric determination of chlorophyll," J. Cons. Intl. Explor. Mer. 30, 3-15 (1965).
  35. C. S. Yentsch, "Measurement of visible light absorption by particulate matter in the ocean," Limnol. Oceanogr. 7, 207-217 (1962). [CrossRef]
  36. B. G. Mitchell and D. A. Kiefer, "Chlorophyll a specific absorption and fluorescence excitation spectra for light limited phytoplankton," Deep Sea Res. 35, 639-663 (1988). [CrossRef]
  37. M. Kishino, N. Takahashi, N. Okami, and S. Ichimura, "Estimation of the spectral absorption coefficients of phytoplankton in the sea," Bull. Marine Sci. 37, 634-642 (1985).
  38. C. D. Mobley, L. K. Sundman, and E. Boss, "Phase function effects on oceanic light fields," Appl. Opt. 41, 1035-1050 (2002). [CrossRef] [PubMed]
  39. A. Morel, "Optical properties of pure water and pure seawater," in Optical Aspects of Oceanography, N.G.Jerlov and E.S.Nielsen, eds. (Academic, (1974), pp. 1-24.
  40. E. Boss and W. S. Pegau, "Relationship of light scattering at an angle in the backward direction to the backscattering coefficient," Appl. Opt. 40, 5503-5507 (2001). [CrossRef]
  41. T. Oishi, "Significant relationship between the backward scattering coefficient of seawater and the scattering at 120°," Appl. Opt. 29, 4658-4665 (1990). [CrossRef] [PubMed]
  42. A. Bricaud and A. Morel, "Light attenuation and scattering by phytoplanktonic cells. A theoretical modeling," Appl. Opt. 25, 571-580 (1986). [CrossRef] [PubMed]
  43. Y. H. Ahn, A. Bricaud, and A. Morel, "Light backscattering efficiency and related properties of some phytoplankters," Deep Sea Res. Part I , 39, 1835-1855 (1992). [CrossRef]
  44. M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, "Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration," Limnol. Oceanogr. 48, 843-859 (2003). [CrossRef]
  45. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).
  46. R. P. Bukata, J. H. Jerome, K. Y. Kondratyev, and D. V. Pozdnyakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, 1995).
  47. S. Tassan and G. M. Ferrari, "An alternative approach to absorption measurements of aquatic particles retained on filters," Limnol. Oceanogr. 40, 1358-1368 (1995). [CrossRef]
  48. D. G. Bowers, G. E. L Harker, and B. Stephan, "Absorption spectra of inorganic particles in the Irish Sea and their relevance to remote sensing of chlorophyll," Int. J. Remote Sens. 17, 2449-2469 (1996). [CrossRef]
  49. M. Babin and D. Stramski, "Light absorption by aquatic particles in the near infra-red spectral region," Limnol. Oceanogr. 47, 911-915 (2002). [CrossRef]
  50. K. L. Carder, G. F. Beardsley, and H. Pak, "Particle size distribution in the Eastern Equatorial Pacific," J. Geophys. Res. 76, 5070-5077 (1971). [CrossRef]
  51. H. R. Gordon and O. B. Brown, "A theoretical model of light scattering by Sargasso Sea particles," Limn. Oceanogr. 17, 826-832 (1972). [CrossRef]
  52. M. Jonasz, "Particle size distribution in the Baltic," Tellus 35B, 346-358 (1983). [CrossRef]
  53. A. Morel and A. Bricaud, "Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton," Deep Sea Res , Part I 28, 1375-1393 (1981). [CrossRef]
  54. A. Morel and B. Gentili, "Diffuse reflectance of oceanic waters: its dependence on Sun angle as influenced by the molecular scattering contribution," Appl. Opt. 30, 4427-4438 (1991). [CrossRef] [PubMed]
  55. C. S. Roesler and E. Boss, "Spectral beam attenuation coefficient retrieved from ocean color inversion," Geophys. Res. Lett. 30, 1468, doi: (2003). [CrossRef]
  56. A. Morel and S. Maritorena, "Bio-optical properties of oceanic waters: a reappraisal," J. Geophys. Res. 106, C4, 7163-7180 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited