OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 15 — May. 20, 2006
  • pp: 3659–3664

Effect of washing on identification of Bacillus spores by principal-component analysis of fluorescence data

Joseph Kunnil, Sivananthan Sarasanandarajah, Easaw Chacko, and Lou Reinisch  »View Author Affiliations

Applied Optics, Vol. 45, Issue 15, pp. 3659-3664 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (632 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The fluorescence spectra of Bacillus spores are measured at excitation wavelengths of 280, 310, 340, 370, and 400   nm . When cluster analysis is used with the principal-component analysis, the Bacillus globigii spores can be distinguished from the other species of Bacillus spores (B. cereus, B. popilliae, and B. thuringiensis). To test how robust the identification process is with the fluorescence spectra, the B. globigii is obtained from three separate preparations in different laboratories. Furthermore the fluorescence is measured before and after washing and redrying the B. globigii spores. Using the cluster analysis of the first two or three principal components of the fluorescence spectra, one is able to distinguish B. globigii spores from the other species, independent of preparing or washing the spores.

© 2006 Optical Society of America

OCIS Codes
(300.0300) Spectroscopy : Spectroscopy
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(300.6540) Spectroscopy : Spectroscopy, ultraviolet

ToC Category:

Original Manuscript: August 24, 2005
Manuscript Accepted: November 23, 2005

Joseph Kunnil, Sivananthan Sarasanandarajah, Easaw Chacko, and Lou Reinisch, "Effect of washing on identification of Bacillus spores by principal-component analysis of fluorescence data," Appl. Opt. 45, 3659-3664 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. T. Coburn, F. E. Lytle, and D. M. Huber, "Identification of bacterial pathogens by laser excited fluorescence," Anal. Chem. 57, 1669-1673 (1985). [CrossRef]
  2. T. M. Rossi and I. M. Warner, "Bacterial identification using fluorescence spectroscopy," in Rapid Detection and Identification of Microorganisms, W.H.Nelson, ed. (Verlag Chemie, 1985), pp. 1-50.
  3. L. Reinisch, J. Tribble, J. A., Werkhaven, and R. H. Ossoff, "Noninvasive optical diagnosis of bacteria causing otitis media," Laryngoscope 104, 264-268 (1994). [PubMed]
  4. M. J. Sorrel, J. Tribble, L. Reinisch, J. A. Werkhaven, and R. H. Ossoff, "Bacteria identification of otitis media with fluorescence spectroscopy," Lasers Surg. Med. 14, 155-163 (1994). [CrossRef]
  5. B. C. Spector, L. Reinisch, D. Smith, and J. A. Werkhaven, "Noninvasive fluorescent identification of bacteria causing acute otitis media in a chinchilla model," Laryngoscope 110, 1119-1123 (2000). [CrossRef] [PubMed]
  6. B. V. Bronk and L. Reinisch, "Variability of steady-state bacterial fluorescence with respect to growth conditions," Appl. Spectrosc. 47, 436-440 (1993). [CrossRef]
  7. Y. S. Cheng, E. B. Barr, B. J. Fan, P. J. Hargis, Jr., D. J. Rader, T. J. O'Hem, J. R. Torczynski, G. C. Tisone, B. L. Preppernau, S. A. Young, and R. I. Randloff, "Detection of bioaerosols using multiwavelength UV fluorescence spectroscopy," Aerosol. Sci. Technol. 30, 186-201 (1999). [CrossRef]
  8. K. R. Beebe and B. R. Kowalski, "Introduction to multivariate calibration and analysis," Anal. Chem. 59, 1007A-1017A (1987). [CrossRef]
  9. M. A. Sharaf, D. L. Illman, and B. R. Kowalski, Chemometrics (Wiley, 1986).
  10. E. R. Malinowski and D. G. Howery, Factor Analysis in Chemistry (Wiley, 1980).
  11. N. Bonnet, "Multivariate statistical methods for analysis of microscope image series," J. Microsc. 190, 2-18 (1998). [CrossRef]
  12. Y. P. Sun, D. F. Sears, and J. Saltiel, "Three component self-modeling technique applied to luminance spectra," Anal. Chem. 59, 2515-2519 (1987). [CrossRef]
  13. S. K. Jenson and F. A. Walty, "Principal-component analysis and canonical analysis in remote sensing," Photogramm. Eng. Remote Sens. 45, 783-784 (1979).
  14. A. Basilevsky, Statistical Factor Analysis and Related Methods, Theory and Applications (J Wiley, 1994). [CrossRef]
  15. B. S. Everitt and G. Dunn, Applied Multivariate Data Analysis (Oxford University, 1992).
  16. A. M. Kshirsagar, Multivariate Analysis (Marcel Dekker, 1972).
  17. R. Gananadesikan, Methods for Statistical Data Analysis of Multivariate Observations (Wiley, 1977).
  18. H. F. Kaiser, "The application of electronic computers to factor analysis," Educ. Psychol. Meas. 20, 141-151 (1960). [CrossRef]
  19. K. Y. Yeung and W. L. Ruzzo, "Principal-component analysis for clustering gene expression data," Bioinformatics 17, 763-774 (2001). [CrossRef] [PubMed]
  20. N. Bonnet, "Artificial intelligence and pattern recognition techniques in microscope image processing and analysis," Adv. Imaging Electron Phys. 114, 1-77 (2000). [CrossRef]
  21. M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, "Cluster analysis and display of genome-wide expression patterns," Proc. Natl. Acad. Sci. USA 95, 14863-14868 (1998). [CrossRef] [PubMed]
  22. I. T. Jolliffe, B. Jones, and B. J. T. Morgan, "Stability and influence in cluster analysis," in Data Analysis and Informatics, E.Diday, ed. (North-Holland, 1988), pp. 507-514.
  23. J. Kunnil, B. Swartz, and L. Reinisch, "Changes in the luminescence between dried and wet bacillus spores," Appl. Opt. 43, 5404-5409 (2004). [CrossRef] [PubMed]
  24. S. Sarasanandarajah, J. Kunnil, E. Chacko, B. V. Bronk, and L. Reinisch, "Reversible changes in fluorescence of bacterial endospores found in aerosols due to hydration/drying," J. Aerosol Sci. 36, 689-699 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited