OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 16 — Jun. 1, 2006
  • pp: 3721–3727

In situ optical control and stabilization of the curing process of holographic gratings with a nematic film–polymer-slice sequence structure

Luciano De Sio, Roberto Caputo, Antonio De Luca, Alessandro Veltri, Cesare Umeton, and Andrey V. Sukhov  »View Author Affiliations


Applied Optics, Vol. 45, Issue 16, pp. 3721-3727 (2006)
http://dx.doi.org/10.1364/AO.45.003721


View Full Text Article

Enhanced HTML    Acrobat PDF (332 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the realization of what we believe to be a new holographic setup for the fabrication of polymer liquid-crystal polymer-slice diffraction gratings, which utilizes an optical-feedback-driven nanopositioning technique. We have increased the stability of the interference pattern by means of a simple piezomirror used in a feedback configuration to keep constant the phase of the interferometer. The feedback system is driven by a proportional, integral, derivative control software, and the stability degree is controlled by the reference signal coming from a standard test grating. A preliminary experimental characterization indicates that good control and stabilization of parasitic fluctuations of the interference pattern are obtained.

© 2006 Optical Society of America

OCIS Codes
(090.2880) Holography : Holographic interferometry
(120.7280) Instrumentation, measurement, and metrology : Vibration analysis
(230.1950) Optical devices : Diffraction gratings

History
Original Manuscript: April 19, 2005
Revised Manuscript: July 8, 2005
Manuscript Accepted: July 22, 2005

Citation
Luciano De Sio, Roberto Caputo, Antonio De Luca, Alessandro Veltri, Cesare Umeton, and Andrey V. Sukhov, "In situ optical control and stabilization of the curing process of holographic gratings with a nematic film-polymer-slice sequence structure," Appl. Opt. 45, 3721-3727 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-16-3721


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Gabor, "Holography, 1948-1971," Science 177, 299-313 (1972). [CrossRef] [PubMed]
  2. R. L. Sutherland, V. P. Tondiglia, and L. V. Natarajan, "Electrically switchable volume gratings in polymer-dispersed liquid crystals," Appl. Phys. Lett. 64, 1074-1076 (1994). [CrossRef]
  3. L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, "Switchable holographic polymer-dispersed liquid-crystal reflection gratings based on thiol-ene photopolymerization," Chem. Mater. 15, 2477-2484 (2003). [CrossRef]
  4. T. J. Bunning, S. M. Kirkpatrick, L. V. Natarajan, V. P. Tondiglia, and D. Tomlin, "Electrically switchable gratings formed using ultrafast holographic two-photon-induced photopolymerization," Chem. Mater. 12, 2842-2848 (2000). [CrossRef]
  5. M. Jazbinsek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, "Electro-optical properties of polymer dispersed liquid-crystal transmission gratings," Mol. Cryst. Liq. Cryst. 375, 455-465 (2002). [CrossRef]
  6. A. Y. G. Fuh and T. S. Mo, "Holographic grating based on dye-doped surface-stabilized ferroelectric liquid-crystal films," Jpn. J. Appl. Phys. Part 1 41, 2122-2127 (2002). [CrossRef]
  7. C. C. Bowley, P. Kossyrev, S. Danworaphong, J. Colegrove, J. Kelly, T. Fiske, H. J. Yuan, and G. P. Crawford, "Improving the voltage response of holographically formed polymer dispersed liquid crystals (H-PDLCs)," Mol. Cryst. Liq. Cryst. 359, 647-659 (2001).
  8. M. J. Escuti and G. P. Crawford, "Holographic photonic crystals," Opt. Eng. 43, 1973-1987 (2004). [CrossRef]
  9. M. J. Escuti, J. Qi, and G. P. Crawford, "Tunable face-centered-cubic photonic crystal formed in holographic polymer dispersed liquid crystals," Opt. Lett. 28, 522-524 (2003). [CrossRef] [PubMed]
  10. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000). [CrossRef] [PubMed]
  11. R. Jakubiak, T. J. Bunning, R. A. Vaia, L. V. Natarajan, and V. P. Tondiglia, "Electrically switchable, one-dimensional polymeric resonators from holographic photopolymerization: a new approach for active photonic bandgap materials," Adv. Mater. 15, 241-245 (2003). [CrossRef]
  12. D. E. Lucchetta, L. Criante, O. Francescangeli, and F. Simoni, "Wavelength flipping in laser emission driven by a switchable holographic grating," Appl. Phys. Lett. 84, 837-839 (2004). [CrossRef]
  13. G. Strangi, V. Barna, R. Caputo, A. de Luca, C. Versace, N. Scaramuzza, C. Umeton, and R. Bartolino, "Color-tunable organic microcavity laser using distributed feedback," Phys. Rev. Lett. 94, 063903 (2005). [CrossRef] [PubMed]
  14. N. Tsutsumi and A. Fujihara, "Tunable distributed feedback lasing with narrowed emission using holographic dynamic gratings in a polymeric waveguide," Appl. Phys. Lett. 86, 061101 (2005). [CrossRef]
  15. R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V. Sukhov, "Observation of two-wave coupling during the formation of POLICRYPS diffraction grating," Opt. Lett. 30, 1840-1842 (2005). [CrossRef] [PubMed]
  16. R. Caputo, L. De Sio, A. V. Sukhov, A. Veltri, and C. Umeton, "Development of a new kind of holographic grating made of liquid-crystal films separated by slices of polymeric material," Opt. Lett. 29, 1261-1263 (2004). [CrossRef] [PubMed]
  17. A. Veltri, R. Caputo, A. V. Sukhov, and C. Umeton, "Model for the photoinduced formation of diffraction gratings in liquid-crystalline composite materials," Appl. Phys. Lett. 84, 3492-3494 (2004). [CrossRef]
  18. Inovar Devices, "Fringe Locker," http://www.inovar-inc.com/index.html.
  19. Excalibur Engineering, "Fringe Locker," http://www.excaliburengineering.com.
  20. Odhner Holographics, "Fringe Locker," http://www.stabilock.com.
  21. Data Optics, "Fringe control system," http://www.dataoptics.com.
  22. J. Frejlich, L. Cescato, and G. F. Mendes, "Analysis of an active stabilization system for a holographic setup," Appl. Opt. 27, 1967-1976 (1988). [CrossRef] [PubMed]
  23. R. K. Heilmann, P. T. Konkola, C. G. Chen, G. S. Pati, and M. L. Schattenburg, "Digital heterodyne interference fringe control system," J. Vac. Sci. Technol. B 19, 2342-2346 (2001). [CrossRef]
  24. T. Mattison, R. Greenall, and T. Downs, "Vibration control feedback R&D at University of British Columbia," in Proceedings of Nanobeam 2002, the 26th Advanced ICFA Beam Dynamics Workshop on Nanometre Size Colliding Beams, R. Assmann and F. Zimmermann, eds. (CERN Proceedings 2003-001 IPHE Document 2003-007), pp. 81-86.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited