OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 16 — Jun. 1, 2006
  • pp: 3817–3825

Fiber-optic laser sensor for mine detection and verification

Christian Bohling, Dirk Scheel, Konrad Hohmann, Wolfgang Schade, Matthias Reuter, and Gerhard Holl  »View Author Affiliations

Applied Optics, Vol. 45, Issue 16, pp. 3817-3825 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (1051 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



What we believe to be a new optical approach for the identification of mines and explosives by analyzing the surface materials and not only bulk is developed. A conventional manually operated mine prodder is upgraded by laser-induced breakdown spectroscopy (LIBS). In situ and real-time information of materials that are in front of the prodder are obtained during the demining process in order to optimize the security aspects and the speed of demining. A Cr 4 + : Nd 3 + : YAG microchip laser is used as a seed laser for an ytterbium-fiber amplifier to generate high-power laser pulses at 1064   nm with pulse powers up to E p = 1   mJ , a repetition rate of f rep. = 2 20   kHz and a pulse duration of t p = 620   ps . The recorded LIBS signals are analyzed by applying neural networks for the data analysis.

© 2006 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(140.3440) Lasers and laser optics : Laser-induced breakdown
(280.3420) Remote sensing and sensors : Laser sensors
(300.6360) Spectroscopy : Spectroscopy, laser
(350.5400) Other areas of optics : Plasmas

Original Manuscript: May 23, 2005
Revised Manuscript: October 20, 2005
Manuscript Accepted: October 28, 2005

Christian Bohling, Dirk Scheel, Konrad Hohmann, Wolfgang Schade, Matthias Reuter, and Gerhard Holl, "Fiber-optic laser sensor for mine detection and verification," Appl. Opt. 45, 3817-3825 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Altmann, "Neue Technologien für die Minensuche," Phys. Unserer Zeit 32, 26-32 (2001). [CrossRef]
  2. R. Sattmann, I. Mönch, H. Krause, R. Noll, S. Couris, A. Hatziapostolou, A. Mavromanolakis, C. Fotakis, E. Larrauri, and R. Miguel, "Laser-induced breakdown spectroscopy for polymer identification," Appl. Spectrosc. 52, 456-461 (1998). [CrossRef]
  3. R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, and P. D. French, "Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments," Spectrochim. Acta , Part B 56, 777-793 (2001). [CrossRef]
  4. F. C. De Lucia, Jr., R. S. Harmon, K. L. McNesby, R. J. Winkler, Jr., and A. W. Miziolek, "Laser-induced breakdown spectroscopy analysis of energetic materials," Appl. Opt. 42, 6148-6152 (2003). [CrossRef] [PubMed]
  5. V. Sturm and R. Noll, "Laser-induced breakdown spectroscopy of gas mixtures of air, CO2, N2, and C3H8 for simultaneous C, H, O, and N measurement," Appl. Opt. 42, 6221-6225 (2003). [CrossRef] [PubMed]
  6. R. Noll, H. Bette, A. Brysch, M. Krausharr, I. Mönch, L. Peter, and V. Sturm, "Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry," Spectrochim. Acta , Part B 56, 637-649 (2001). [CrossRef]
  7. R. Sattmann, V. Sturm, and R. Noll, "Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses," J. Phys. D 28, 2181-2187 (1995). [CrossRef]
  8. D. E. Lancaster, K. L. McNesby, R. G. Daniel, and A. W. Miziolek, "Spectroscopic analysis of fire suppressants and refrigerants by laser-induced breakdown spectroscopy," Appl. Opt. 38, 1476-1480 (1999). [CrossRef]
  9. J. M. Vadillo, S. Palanco, M. D. Romero, and J. J. Laserna, "Applications of laser-induced breakdown spectrometry (LIBS) in surface analysis," Fresenius J. Anal. Chem. 355, 909-912 (1996).
  10. J. Bublitz, C. Dölle, W. Schade, A. Hartmann, and R. Horn, "Laser-induced breakdown spectroscopy for soil diagnostics," Eur. J. Soil Sci. 52, 305-312 (2001). [CrossRef]
  11. V. Sturm, J. Vrenegor, R. Noll, and M. Hemmerlin, "Bulk analysis of steel samples with surface scale layers by enhanced laser ablation and LIBS analysis of C, P, S, Al, Cr, Cu, Mn, and Mo," J. Anal. At. Spectrom. 19, 451-456 (2004). [CrossRef]
  12. J. J. Zayhowski, "Ultraviolet generation with passively Q-switched microchip lasers," Opt. Lett. 21, 588-590 (1996). [CrossRef] [PubMed]
  13. C. Romano, S. Gräser, K. Faulian, W. Schade, and G. Holl, "Application of LIBS Spectroscopy for Remote Bulk Detection of Explosives," in Detection of Bulk Explosives,H.Schubert and A.Kuznetsov, eds., NATO Science Series (Kluwer Academic, 2004), pp. 167-173.
  14. W. Schade, G. Holl, A. Holl, and J. Bublitz, European Patent EP 1 443 319 A1 (2004).
  15. K. Stankov, Alphalas GmbH Göttingen (personal communication, 2002).
  16. T. Voss, D. Scheel, and W. Schade, "A microchip-laser-pumped DFB-polymer-dye laser," Appl. Phys. B 73, 105-109 (2001).
  17. S. Höfer, A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, S. Unger, S. Jetschke, H.-R. Müller, and I. Freitag, "Single-frequency master-oscillator fiber power amplifier system emitting 20 W of power," Opt. Lett. 26, 1326-1328 (2001). [CrossRef]
  18. J. Limpert, A. Liem, T. Gabler, H. Zellmer, A. Tünnermann, S. Unger, S. Jetschke, and H.-R, Müller, "High-average-power picosecond Yb-doped fiber amplifier," Opt. Lett. 26, 1849-1851 (2001). [CrossRef]
  19. J. Limpert, S. Höfer, A. Liem, H. Zellmer, A. Tünnermann, S. Knoke, and H. Voelckel, "100 W average power high energy nanosecond fiber amplifier," Appl. Phys. B 75, 477-479 (2002). [CrossRef]
  20. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium doped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997). [CrossRef]
  21. C. Barnhard, P. Myslinski, J. Chrostowski, and M. Kavehrad, "Analytical model for rare-earth-doped fiber amplifiers and lasers," IEEE J. Quantum Electron. 30, 1817-1830 (1994). [CrossRef]
  22. P. Geiser, C. Romano, C. Bohling, U. Willer, W. Schade, M. Reich, and A. Tünnermann, "A pulsed laser-source for MIR-LIDAR," in Conference on Lasers and Electro-optics, Vol. 96 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), Paper CTu 57.
  23. M. Reuter, "Computing with Activities," in Computational Intelligence-LNCS 2206 (Springer, 2001), pp. 174-184.
  24. M. Reuter and S. Dierkes, "Analysing epileptic events online by neural nets, special preprocessing-methods included," Biomedic. Soft-Comput. Human Sci. 5, 61-66 (2000).
  25. M. Oja, S. Kaski, and T. Kohonen, "Bibliography of self-organizing map (SOM) papers: 1998-2001 addennum," Neural Computing Surveys 3, 1-156 (2003).
  26. S. Kaski, J. Kangas, and T. Kohonen, "Bibliography of self-organizing map (SOM) papers: 1981-1997," Neural Computing Surveys 1, 102-350 (1998).
  27. A. A. Kaminskii, M. Sh. Akchurin, V. I. Alshits, K. Ueda, K. Takaichi, J. Lu, T. Uematsu, M. Musha, A. Shirakawa, V. Gabler, H. J. Eichler, H. Yagi, T. Yangitani, S. N. Bagayev, J. Fernandes, and R. Balda, "New data on the physical properties of Y3Al5O12-based nanocrystalline laser ceramics," Crystallogr. Rep. 48, 515-519 (2003). [CrossRef]
  28. G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, "Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers," J. Opt. Soc. Am. B 16, 376-388 (1999). [CrossRef]
  29. K. Furusawa, A. Malinowski, J. H. V. Price, T. M. Monro, J. K. Sahu, J. Nilson, and D. J. Richardson, "Cladding pumped ytterbium-doped fiber laser with holey inner and outer cladding," Opt. Express 9, 714-720 (2001). [CrossRef] [PubMed]
  30. J. Limpert, T. Schreibner, S. Nolte, H. Zellmer, and A. Tünnermann, "High-power air-clad large-mode-area photonic crystal fiber laser," Opt. Express 11, 818-823 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited