OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 16 — Jun. 1, 2006
  • pp: 3839–3845

Midinfrared laser source with high power and beam quality

Espen Lippert, Stephane Nicolas, Gunnar Arisholm, Knut Stenersen, and Gunnar Rustad  »View Author Affiliations

Applied Optics, Vol. 45, Issue 16, pp. 3839-3845 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (262 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A simple scheme for generation of high power in the midinfrared is demonstrated. By using a 15   W thulium-doped fiber laser emitting at 1907   nm to pump a Q-switched Ho:YAG laser, we obtained 9.8   W   at   2096   nm at a 20   kHz pulse repetition rate with excellent beam quality. The output of this laser was used to pump a doubly resonant zinc germanium phosphide based optical parametric oscillator, and we obtained 5.1   W average power in the 3 5   μm range with M 2 1.8 .

© 2006 Optical Society of America

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3580) Lasers and laser optics : Lasers, solid-state
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers

Original Manuscript: July 18, 2005
Manuscript Accepted: October 17, 2005

Espen Lippert, Stephane Nicolas, Gunnar Arisholm, Knut Stenersen, and Gunnar Rustad, "Midinfrared laser source with high power and beam quality," Appl. Opt. 45, 3839-3845 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, "Efficient mid-infrared laser using 1.9-μm-pumped Ho:YAG and ZnGeP2 optical parametric oscillators," J. Opt. Soc. Am. B 17, 723-728 (2000). [CrossRef]
  2. G. Arisholm, E. Lippert, G. Rustad, and K. Stenersen, "Effect of resonator length on a doubly resonant optical parametric oscillator pumped by a multilongitudinal-mode beam," Opt. Lett. 25, 1654-1656 (2000). [CrossRef]
  3. C. Bollig, R. A. Hayward, W. A. Clarkson, and D. C. Hanna, "2-W Ho:YAG laser intracavity pumped by a diode-pumped Tm:YAG laser," Opt. Lett. 23, 1757-1759(1998). [CrossRef]
  4. M. Schellhorn, A. Hirth, and C. Kieleck, "Ho:YAG laser intracavity pumped by a diode-pumped Tm:YLF laser," Opt. Lett. 28, 1933-1935 (2003). [CrossRef] [PubMed]
  5. P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, "High-power/high-brightness diode-pumped 1.9-μm Thulium and resonantly pumped 2.1-μm Holmium lasers," IEEE J. Sel. Top. Quantum Electron. 6, 629-635 (2000). [CrossRef]
  6. E. Lippert, G. Arisholm, G. Rustad, and K. Stenersen, "Fiber laser pumped mid-IR source," in Advanced Solid State Photonics, J. J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), pp. 292-297.
  7. E. Lippert, G. Rustad, S. Nicolas, G. Arisholm, and K. Stenersen, "Fibre laser pumped midinfrared source," in Solid State Laser Technologies and Femtosecond Phenomena, J. A. C. Terry and W. A. Clarkson, eds., Proc. SPIE 5620, 56-62 (2004).
  8. D. Y. Shen, W. A. Clarkson, L. J. Cooper, and R. B. Williams, "Efficient single-axial-mode operation of a Ho:YAG ring laser pumped by a Tm-doped silica fiber laser," Opt. Lett. 29, 2396-2398 (2004). [CrossRef] [PubMed]
  9. D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, "Efficient Ho:YAG laser pumped by a cladding-pumped tunable Tm:silica-fibre laser," Appl. Phys. B 79, 559-561 (2004).
  10. A. Dergachev, P. F. Moulton, and T. E. Drake, "High-power, high-energy Ho:YLF laser pumped with Tm:fiber laser," in Advanced Solid State Photonics, C. Denman and I. Sorokina, eds., Vol. 98 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), pp. 608-612.
  11. H. J. P. Smith, D. J. Dube, M. E. Gardner, S. A. Clough, F. X. Kneizys, and L. S. Rothman, FASCODE—Fast Atmospheric Signature Code (Spectral Transmittance and Radiance), Air Force Geophysical Laboratory Technical Report AFGL-TR-78-0081 (Air Force Geophysical Laboratory, 1978).
  12. P. Peterson, A. Gavrielides, and P. M. Sharma, "CW theory of a laser-diode- pumped two-manifold solid-state laser," Opt. Commun. 109, 282-287 (1994). [CrossRef]
  13. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+," IEEE J. Quantum Electron. 28, 2619-2930 (1992). [CrossRef]
  14. J. B. Gruber, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, G. A. Turner, and M. R. Kokta, "Energy-levels and crystal quantum states of trivalent holmium in yttrium-aluminum-garnet," J. Appl. Phys. 69, 8183-8204 (1991). [CrossRef]
  15. L. B. Shaw, R. S. F. Chang, and N. Djeu, "Measurement of up-conversion energy- transfer probabilities in Ho:Y3Al5O12 and Tm:Y3Al5O12," Phys. Rev. B 50, 6609-6619 (1994). [CrossRef]
  16. N. P. Barnes, B. M. Walsh, and E. D. Filer, "Ho:Ho upconversion: applications to Ho lasers," J. Opt. Soc. Am. B 20, 1212-1219 (2003). [CrossRef]
  17. S. R. Bowman, J. E. Tucker, and S. Kirkpatrick, "Progress in the modeling of migration limited energy transfer in laser materials," in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1998), pp. 519-523.
  18. K. Stenersen, E. Lippert, G. Rustad, and G. Arisholm, Thermal effects in end-pumped solid state laser - influence on resonator stability, beam quality, and output power, Internal Report FFI-Rapport 2001/03865 (Norwegian Defence Research Establishment, 2001), http://rapporter.ffi.no/rapporter/2001/03865.pdf. [PubMed]
  19. IOS, "Lasers and laser-related equipment - Test methods for laser beam parameters - Beam widths, divergence angle and beam propagation factor - Part 3: Intrinsic and geometrical laser beam classification, propagation and details of test methods," IOS Rep. 11146-3 (International Organization for Standardization, 2004).
  20. G. Arisholm, "General numerical methods for simulating second-order nonlinear interactions in birefringent media," J. Opt. Soc. Am. B 14, 2543-2549 (1997). [CrossRef]
  21. G. Arisholm, "Advanced numerical simulation models for second-order nonlinear interactions," in Fundamental Problems of Laser Optics, N. N. Rosanov, ed., Proc. SPIE 3685, 86-97 (1998).
  22. G. Arisholm, "Quantum noise initiation and macroscopic fluctuations in optical parametric oscillators," J. Opt. Soc. Am. B 16, 117-127 (1999). [CrossRef]
  23. D. J. Armstrong, W. J. Alford, T. D. Raymond, A. V. Smith, and M. S. Bowers, "Parametric amplification and oscillation with walkoff-compensating crystals," J. Opt. Soc. Am. B 14, 460-474 (1997). [CrossRef]
  24. G. Ghosh, "Sellmeier coefficients for the birefringence and refractive indices of ZnGeP2 nonlinear crystal at different temperatures," Appl. Opt. 37, 1205-1212 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited