OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 17 — Jun. 10, 2006
  • pp: 4012–4019

Surface roughness and material removal in fluid jet polishing

Hui Fang, Peiji Guo, and Jingchi Yu  »View Author Affiliations


Applied Optics, Vol. 45, Issue 17, pp. 4012-4019 (2006)
http://dx.doi.org/10.1364/AO.45.004012


View Full Text Article

Enhanced HTML    Acrobat PDF (2291 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Based on experiments, the dependence of material removal and surface roughness on the characteristics of abrasive particles, on the workpiece, and on other process parameters such as working pressure and incidence angle in fluid jet polishing (FJP) technology were investigated. Experimental results show a volume removal rate that is approximately proportional to the square root of the Young's modulus (E) and inversely proportional to the square of the Knoop hardness ( H k ) of glass. Similarly, surface roughness is also determined in FJP by elastic stiffness E and plastic parameter H k . The influence of the incidence angle on surface roughness and material removal were studied, and a linear dependence of material removal on the working pressure was obtained. Further, it was found that an optical-quality surface can be achieved by use of Cerox 1650 abrasive particles in FJP and can satisfy the requirements of modern optical manufacturing.

© 2006 Optical Society of America

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.4610) Optical design and fabrication : Optical fabrication
(220.5450) Optical design and fabrication : Polishing

History
Original Manuscript: November 29, 2005
Revised Manuscript: January 12, 2006
Manuscript Accepted: January 12, 2006

Citation
Hui Fang, Peiji Guo, and Jingchi Yu, "Surface roughness and material removal in fluid jet polishing," Appl. Opt. 45, 4012-4019 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-17-4012

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited