OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 17 — Jun. 10, 2006
  • pp: 4092–4101

High-precision methods and devices for in situ measurements of thermally induced aberrations in optical elements

Victor V. Zelenogorsky, Alexander A. Solovyov, Ilya E. Kozhevatov, Eugene E. Kamenetsky, Eugene A. Rudenchik, Oleg V. Palashov, Dmitry E. Silin, and Efim A. Khazanov  »View Author Affiliations


Applied Optics, Vol. 45, Issue 17, pp. 4092-4101 (2006)
http://dx.doi.org/10.1364/AO.45.004092


View Full Text Article

Enhanced HTML    Acrobat PDF (742 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An optical system that comprises two devices for remote measurements, a broadband optical interferometer and a scanning Hartmann sensor, is described. The results of simultaneous measurements with both devices and the results of numerical modeling of sample surface heating are presented.

© 2006 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.6810) Instrumentation, measurement, and metrology : Thermal effects

History
Original Manuscript: October 20, 2005
Manuscript Accepted: December 17, 2005

Citation
Victor V. Zelenogorsky, Alexander A. Solovyov, Ilya E. Kozhevatov, Eugene E. Kamenetsky, Eugene A. Rudenchik, Oleg V. Palashov, Dmitry E. Silin, and Efim A. Khazanov, "High-precision methods and devices for in situ measurements of thermally induced aberrations in optical elements," Appl. Opt. 45, 4092-4101 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-17-4092


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Degallaix, C. Zhao, J. Li, and D. Blair, "Thermal lensing compensation for AIGO high optical power test facilities," Class. Quantum Grav. 21, 903-908 (2004). [CrossRef]
  2. A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, "LIGO--the Laser-Interferometer-Gravitational-Wave Observatory," Science 256, 325-333 (1992). [CrossRef] [PubMed]
  3. M. Yamanaka, H. Matsui, Y. Kawada, R. Kandasamy, T. Eguchi, T. Kanabe, M. Nakatsuka, Y. Izawa, S. Nakai, T. Kawashima, Y. Okada, T. Kanzaki, H. Miyajima, M. Miyamoto, and H. Kan, "Laser-diode pumped 10J × 10Hz Nd: glass slab laser for inertial fusion energy," paper TuO2cl 199 presented at the First International Conference on Inertial Fusion Sciences and Applications, Bordeaux, France, 12-17 September 1999.
  4. J. Hecht, "Laser weapons go solid-state," Laser Focus World 40, 61 (2004).
  5. G. S. Gorelik, "On application of the modulation method to optical interferometry," Dokl. Akad. Nauk USSR 83, 549-552 (1952).
  6. O. Sasaki and H. Okazaki, "Sinusoidal phase modulating interferometry for surface profile measurements," Appl. Opt. 25, 3137-3140 (1986). [CrossRef] [PubMed]
  7. M. Adachi, H. Miki, Y. Nakai, and I. Kawaguchi, "Optical precision using the differential method," Opt. Lett. 12, 792-796 (1987). [CrossRef] [PubMed]
  8. Y. Y. Cheng and J. C. Wyant, "Phase shifter callibration in phase-shifting interferometry," Appl. Opt. 24, 3049-3052 (1985). [CrossRef] [PubMed]
  9. S. W. Kim, M. G. Kang, and G. S. Han, "Accelerated phase-measuring algorithm of least squares for phase-shifting interferometry," Opt. Eng. 36, 3101-3106 (1997). [CrossRef]
  10. A. G. Olszak, E. Novak, K. Stumpe, and J. Semrad, "High-performance interferometer for site flatness inspection," in Interferometry '99: Applications, P. Krzysztof and P. J. Werner, eds., Proc. SPIE 3745, 408-415 (1999). [CrossRef]
  11. E. Novak, A. G. Olszak, K. Stumpe, R. E. Knowlden, L. Malevanchik, and G. Z. Angeli, "Laser Fizeau interferometer for silicon wafer site flatness testing," in Surface Characterization for Computer Disks, Wafers, and Flat Panel Displays, J. C. Stover, ed., Proc. SPIE 3619, 101-109 (1999). [CrossRef]
  12. I. E. Kozhevatov, E. A. Rudenchik, N. P. Cheragin, and E. H. Kulikova, "Absolute testing of the profiles of large-size flat optical surfaces," Radiophys. Quantum Electron. 44, 575-581 (2001). [CrossRef]
  13. G. E. Sommarggren, "Diffraction methods raise interferometer accuracy," Laser Focus World 32, 61 (1996).
  14. I. E. Kozhevatov, E. A. Rudenchik, N. P. Cheragin, and E. H. Kulikova, "A new remote method for estimating the parameters of optical elements," in International Quantum Electronics Conference (IQEC) (2002), p. 147.
  15. I. E. Kozhevatov and E. H. Kulikova, "High-order broadband optical interferometry," Radiophys. Quantum Electron. 46, 65-72 (2003). [CrossRef]
  16. R. J. Bell, Introduction to Fourier Spectroscopy (Mir, 1975).
  17. J. Hartman, "Bemerkungen uber den Bau und die Justirung von Spektrographen," Z. Instrumentenkd. 20, 47 (1900).
  18. R. Tyson, Principles of Adaptive Optics, 2nd ed. (Academic, 1998).
  19. WaveFrontSciences, "CLAS-2D data sheet" (WaveFront Sciences, Albuquerque, N.M., 2002).
  20. A. K. Potemkin, A. I. Makarov, and A. N. Mal'shakov, "Measurement of small wavefront distortions of laser radiation," Opt. Spectrosc. 86, 148-152 (1999).
  21. E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, "Compensation of thermally induced modal distortions in Faraday isolators," IEEE J. Quantum Electron. 40, 1500-1510 (2004). [CrossRef]
  22. A. K. Potemkin, A. N. Mal'shakov, N. F. Andreev, and D. H. Reitze, "Use of self-focusing for measurements of ultrasmall (less than lambda/3000) wave-front distortions," J. Opt. Soc. Am. B 19, 650-655 (2002). [CrossRef]
  23. C. Magnan and J. C. Pecker, "Asymmetry in solar spectral lines," Highlights Astron. 3, 171-203 (1973).
  24. N. M. Belyaev and A. A. Ryadno, Methods of Thermal Conductivity Theory, Part 2 (Higher School, Moscow, 1982).
  25. L. D. Landau and E. M. Lifshitz, Theoretical Physics. Fluid Mechanics. (Science, Moscow, 1987).
  26. A. A. Samarsky and P. N. Vabishevich, Numerical Methods for Solving Inverse Problems of Mathematical Physics (USSR, Moscow, 2004).
  27. L. D. Landau and E. M. Lifshitz, Theoretical Physics. Theory of Elasticity (Science, Moscow, 1987).
  28. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited