OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 18 — Jun. 20, 2006
  • pp: 4366–4382

Measurements of the foreign-broadened continuum of water vapor in the 6.3 μm band at −30 °C

Penny M. Rowe, Von P. Walden, and Stephen G. Warren  »View Author Affiliations


Applied Optics, Vol. 45, Issue 18, pp. 4366-4382 (2006)
http://dx.doi.org/10.1364/AO.45.004366


View Full Text Article

Enhanced HTML    Acrobat PDF (1963 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The foreign-broadened continuum of water vapor in the ν 2 band ( 5 7.7   μm , 1300 2000 cm - 1 ) is important for satellite-based retrievals of water vapor in the upper troposphere, where temperatures are below 25 ° C . Continuum coefficients have previously been measured mostly at or above + 23 ° C . We present continuum coefficients in the ν 2 band retrieved from measurements made in Antarctica at temperatures near 30 ° C : atmospheric transmission at South Pole Station and atmospheric emission at Dome C. The continuum coefficients derived from these measurements are generally in agreement with the widely used Mlawer, Tobin–Clough, Kneizys, Davies continuum. Differences are at most 30% , corresponding to a 6% relative error in retrieved upper-tropospheric humidity.

© 2006 Optical Society of America

OCIS Codes
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(010.1320) Atmospheric and oceanic optics : Atmospheric transmittance
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(300.6340) Spectroscopy : Spectroscopy, infrared

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: September 27, 2005
Manuscript Accepted: January 6, 2006

Citation
Penny M. Rowe, Von P. Walden, and Stephen G. Warren, "Measurements of the foreign-broadened continuum of water vapor in the 6.3 μm band at −30 °C," Appl. Opt. 45, 4366-4382 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-18-4366


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Soden, S. Tjemkes, J. Schmetz, R. Saunders, J. Bates, B. Ellingson, R. Engelen, L. Garand, D. Jackson, G. Jedlovec, T. Kleespies, D. Randel, P. Rayer, E. Salathe, D. Schwarzkopf, N. Scott, B. Sohn, S. de Souza-Machado, L. Strow, D. Tobin, D. Turner, P. van Delst, and T. Wehr, "An intercomparison of radiation codes for retrieving upper-tropospheric humidity in the 6.3-μm band: a report from the first GVAP workshop," Bull. Am. Meteorol. Soc. 81, 797-808 (2000). [CrossRef]
  2. M. A. Ringer, J. M. Edwards, and A. Slingo, "Simulation of satellite channel radiances in the Met Office Unified Model," Q. J. R. Meteorol. Soc. 129, 1169-1190 (2003). [CrossRef]
  3. Q. Ma and R. H. Tipping, "The density matrix of H2O-N2 in the coordinate representation: a Monte Carlo calculation of the far-wing lineshape," J. Chem. Phys. 112, 574-584 (2000). [CrossRef]
  4. S. A. Clough, F. X. Kneizys, R. W. Davies, R. Gamache, and R. Tipping, "Theoretical line shape for H2O vapor: application to the continuum," in Atmospheric Water Vapor, A.Deepak, T.D.Wilkerson, and L.H.Ruhnke, eds. (Academic, 1980), pp. 25-46.
  5. D. E. Burch, D. A. Gryvnak, and R. R. Patty, "Absorption of infrared radiation by CO2 and H2O. Experimental techniques," J. Opt. Soc. Am. 57, 885-895 (1967). [CrossRef]
  6. D. E. Burch, "Continuum absorption by H2O," Rep. AFGL-TR-81-0300 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1982).
  7. D. E. Burch and R. L. Alt, "Continuum absorption by H2O in the 700-1200 cm−1 windows," Rep. AFGL-TR-84-0128 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1984).
  8. D. C. Tobin, F. A. Best, P. D. Brown, S. A. Clough, R. G. Dedecker, R. G. Ellingson, R. K. Garcia, H. B. Howell, R. O. Knuteson, E. J. Mlawer, H. E. Revercomb, J. F. Short, P. F. W. van Deist, and V. P. Walden, "Downwelling spectral radiance observations at the SHEBA Ice Station: water vapor continuum measurements from 17 to 26 μm," J. Geophys. Res. 104, 2081-2092 (1999). [CrossRef]
  9. D. E. Burch, D. A. Gryvnak, and F. J. Gates, "Continuum absorption by H2O between 300 and 825 cm−1," Rep. AFCRL-TR-740377 (U.S. Air Force Cambridge Research Laboratory, Bedford, Mass., 1974).
  10. D. C. Tobin, L. L. Strow, W. J. Lafferty, and W. B. Olson, "Experimental investigation of the self- and N2-broadened continuum within the v2 band of water vapor," Appl. Opt. 35, 4724-4734 (1996). [CrossRef] [PubMed]
  11. Y. Han, J. A. Shaw, J. H. Churnside, P. D. Brown, and S. A. Clough, "Infrared spectral measurements in the tropical Pacific atmosphere," J. Geophys. Res. 102, 4353-4356 (1997). [CrossRef]
  12. D. D. Turner, D. C. Tobin, S. A. Clough, P. D. Brown, R. G. Ellingson, E. J. Mlawer, R. O. Knuteson, H. E. Revercomb, T. R. Shippert, W. L. Smith, and M. W. Shephard, "The QME AERI LBLRTM: a closure experiment for downwelling high spectral resolution infrared radiance," J. Atmos. Sci. 61, 2657-2675 (2004). [CrossRef]
  13. J. M. Theriault, P. L. Roney, D. St. Germain, H. E. Revercomb, R. O. Knuteson, and W. L. Smith, "Analysis of the FASCODE model and its H2O continuum based on long-path atmospheric transmission measurements in the 4.5-11.5 μm region," Appl. Opt. 33, 323-333 (1994). [CrossRef] [PubMed]
  14. V. P. Walden, S. G. Warren, J. D. Spinhirne, A. Heymsfield, R. E. Brandt, P. Rowe, M. S. Town, S. Hudson, and R. M. Jones, "The South Pole Atmospheric Radiation and Cloud Lidar Experiment (SPARCLE)," in Proceedings of the Sixth Conference on Polar Meteorology and Oceanography (American Meteorological Society, 2001), pp. 297-299.
  15. V. P. Walden, M. S. Town, B. Halter, and J. W. V. Storey, "First measurements of the infrared sky brightness at Dome C, Antarctica," Publ. Astron. Soc. Pac. 117, 300-308 (2005). [CrossRef]
  16. E. Aristidi, K. Agabi, E. Fossat, J. Vernin, T. Travouillon, J. S. Lawrence, C. Meyer, J. W. V. Storey, B. Halter, W. L. Roth, and V. Walden, "An analysis of temperatures and wind speeds above Dome C, Antarctica," Astron. Astrophys. 430, 739-746 (2005). [CrossRef]
  17. S. A. Clough, F. X. Kneizys, and R. W. Davies, "Line shape and the water vapor continuum," Atmos. Res. 23, 229-241 (1989). [CrossRef]
  18. R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, W. L. Smith, J. F. Short, and D. C. Tobin, "Atmospheric Emitted Radiance Interferometer. Part I: Instrument design," J. Atmos. Oceanic Technol. 21, 1763-1776 (2004). [CrossRef]
  19. R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, W. L. Smith, J. F. Short, and D. C. Tobin, "Atmospheric Emitted Radiance Interferometer. Part II: Instrument performance," J. Atmos. Oceanic Technol. 21, 1777-1789 (2004). [CrossRef]
  20. Vaisala, http://www.vaisala.com/businessareas/measurementsystems/soundings/products/radiosondes/vaisalaradiosonders80.
  21. S. R. Hudson, M. S. Town, V. P. Walden, and S. G. Warren, "Temperature, humidity, and pressure response of radiosondes at low temperatures," J. Atmos. Oceanic Technol. 825-836 (2004). [CrossRef]
  22. A. Jensen, "Correction of radiosonde measurements for lag error," Geophysica 6, 275-279 (1958).
  23. S. Twomey, Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements (Elsevier, 1977).
  24. P. M. Rowe, "Measurements of the foreign-broadened continuum of water vapor in the 6.3 micron band at −30 Celsius," Ph.D. dissertation (University of Washington, Seattle, 2004).
  25. V. P. Walden, S. G. Warren, and F. J. Murcray, "Measurements of the downward longwave radiation spectrum over the Antarctic plateau and comparisons to a line-by-line radiative transfer model for clear skies," J. Geophys. Res. 103, 3825-3846 (1998), and references therein. [CrossRef]
  26. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, and J. S. Garing, "Optical properties of the atmosphere," 3rd ed. AFCRL-72-0497 (U.S. Air Force Cambridge Research Laboratory, Bedford, Mass., 1972), p. 108.
  27. S. A. Clough, M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, "Atmospheric radiative transfer modeling: a summary of the AER codes. Short communication," J. Quant. Spectrosc. Radiat. Transfer 91, 233-244 (2005). [CrossRef]
  28. R. A. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch,R. F. Calfee, K. Fox, L. S. Rothman, and J. S. Garing, "AFCRL atmospheric absorption line parameters compilation," Rep. AFCRL-TR-730096 (Air Force Cambridge Research Laboratories, Bedford, Mass., 1973).
  29. L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, N. Husson, C. P. Rinsland, and M. A. H. Smith, "The HITRAN database: 1986 edition," Appl. Opt. 26, 4058-4097 (1987). [CrossRef] [PubMed]
  30. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yashino, K. V. Chance, K. W. Jucks, L. R. Brown, N. Nemtchinov, and P. Varanasi, "The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition," J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1998). [CrossRef]
  31. L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. V. Auwera, P. Varanasi, and K. Yoshino, "The HITRAN molecular spectroscopic database: edition of 2000 including updates of 2001," J. Quant. Spectrosc. Radiat. Transfer 82, 5-44 (2003). [CrossRef]
  32. E. J. Mlawer, S. A. Clough, and D. C. Tobin, "The MT_CKD water vapor continuum:a revised perspective including collision induced effects," presented at the Atmospheric Science from Space using Fourier Transform Spectrometry (ASSFTS) Workshop, Bad Wildbad (Black Forest), Germany, 8-10 October 2003.
  33. P. R. Bevington and D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, 2003).
  34. H. E. Revercomb, H. Buijs, H. B. Howell, D. D. LaPorte, W. L. Smith, and L. A. Sromovsky, "Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the High-Resolution Interferometer Sounder," Appl. Opt. 27, 3210-3218 (1988). [CrossRef] [PubMed]
  35. L. S. Rothman, Harvard-Smithsonian Center for Astrophysics, Atomic and Molecular Physics Division, Cambridge, Mass. 02138 (personal communication, 2004).
  36. S. A. Clough, Radiation & Climate Group, Atmospheric and Environmental Research, 131 Hartwell Ave., Lexington, Mass. 02421 (personal communication, 2004).
  37. NOAA CMDL, http://www.cmdl.noaa.gov.
  38. E. J. Dlugokencky, B. P. Walter, K. A. Masarie, P. M. Lang, and E. Kasischke, "Measurements of an anomalous global methane increase during 1998," Geophys. Res. Lett. 28, 499-502 (2001). [CrossRef]
  39. T. J. Conway, P. P. Tans, L. S. Waterman, K. W. Thoning, D. R. Kitzis, K. A. Masarie, and N. Zhang, "Evidence for interannual variability of the carbon cycle from the NOAA/CMDL global air sampling network," J. Geophys. Res. 99, 22831-22855 (1994). [CrossRef]
  40. P. C. Novelli, J. E. Elkins, and L. P. Steele, "The development and evaluation of a gravimetric reference scale for measurements of atmospheric carbon monoxide," J. Geophys. Res. 96, 13109-13121 (1991). [CrossRef]
  41. P. R. Griffiths and J. A. deHaseth, Fourier Transform Infrared Spectrometry (Wiley, 1986).
  42. M. C. Abrams, G. C. Toon, and R. A. Schindler, "Practical example of the correction of Fourier-transform spectra for detector nonlinearity," Appl. Opt. 33, 6307-6314 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited