OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 19 — Jul. 1, 2006
  • pp: 4576–4582

Electrically tunable lens based on a dual-frequency nematic liquid crystal

Oleg Pishnyak, Susumu Sato, and Oleg D. Lavrentovich  »View Author Affiliations

Applied Optics, Vol. 45, Issue 19, pp. 4576-4582 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (322 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on an electrically controlled liquid-crystal-based variable optical lens filled with a dual-frequency nematic material. The lens design employs a hole-patterned electrode structure in a flat nematic cell. In order to decrease the lens switching time we maximize the dielectric torque by using a dual-frequency nematic material that is aligned at an angle approximately 45° with respect to the bounding plates by obliquely deposited SiO x , and by using an overdrive scheme of electrical switching. Depending on the frequency of the applied field, the director realigns either toward the homeotropic state (perpendicular to the substrates) or toward the planar state (parallel to the substrates), which allows one to control not only the absolute value of the focal length but also its sign. Optical performance of the liquid-crystal lens is close to that of an ideal thin lens.

© 2006 Optical Society of America

OCIS Codes
(110.2760) Imaging systems : Gradient-index lenses
(220.3630) Optical design and fabrication : Lenses
(230.3720) Optical devices : Liquid-crystal devices

Original Manuscript: September 26, 2005
Revised Manuscript: December 21, 2005
Manuscript Accepted: December 23, 2005

Virtual Issues
Vol. 1, Iss. 8 Virtual Journal for Biomedical Optics

Oleg Pishnyak, Susumu Sato, and Oleg D. Lavrentovich, "Electrically tunable lens based on a dual-frequency nematic liquid crystal," Appl. Opt. 45, 4576-4582 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Bricot, M. Hareng, and E. Spitz, "Optical projection device and an optical reader incorporating this device," U.S. patent 4,037,929 (26 July 1977).
  2. S. Sato, "Liquid-crystal lens-cells with variable focal length," Jpn. J. Appl. Phys. 18, 1679-1684 (1979). [CrossRef]
  3. S. T. Kowel, D. S. Cleverly, and P. G. Kornreich, "Focusing by electrical modulation of refraction in a liquid crystal cell," Appl. Opt. 23, 278-289 (1984). [CrossRef] [PubMed]
  4. N. A. Riza and M. C. DeJule, "Three-terminal adaptive nematic liquid-crystal lens device," Opt. Lett. 19, 1013-1015 (1994). [CrossRef] [PubMed]
  5. W. W. Chan and S. T. Kowel, "Imaging performance of the liquid-crystal-adaptive lens with conductive ladder meshing," Appl. Opt. 36, 8958-8969 (1997). [CrossRef]
  6. S. Sato, A. Sugiyama, and R. Sato, "Variable-focus liquid-crystal Fresnel lens," Jpn. J. Appl. Phys. Part 2 24, L626-L628 (1985). [CrossRef]
  7. S. Sato, T. Nose, R. Yamaguchi, and S. Yanase, "Relationship between lens properties and director orientation in a liquid crystal lens," Liq. Cryst. 5, 1435-1442 (1989). [CrossRef]
  8. S. Suyama, M. Date, and H. Takada, "Three-dimensional display system with dual-frequency liquid-crystal varifocal lens," Jpn. J. Appl. Phys. Part 1 39, 480-484 (2000). [CrossRef]
  9. H. Ren and S.-T. Wu, "Tunable electronic lens using a gradient polymer network liquid crystal," Appl. Phys. Lett. 82, 22-24 (2003). [CrossRef]
  10. Y.-H. Fan, H. Ren, and S.-T. Wu, "Switchable Fresnel lens using polymer-stabilized liquid crystals," Opt. Express 11, 3080-3086 (2003). [CrossRef] [PubMed]
  11. V. Presnyakov and T. Galstian, "Polymer stabilized liquid crystal lens for electro-optical zoom," in Photonics North 2004: Optical Components and Devices, J. C. Armitage, S. Fafard, R. A. Lessard, G. A. Lampropoulos, eds., Proc. SPIE 5577, 861-869 (2004). [CrossRef]
  12. Z. He, T. Nose, and S. Sato, "Optical performance of liquid crystal cells with asymmetric slit-patterned electrodes in various applied field configurations," Jpn. J. Appl. Phys. Part 1 33, 1091-1095 (1994). [CrossRef]
  13. H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, "Tunable-focus cylindrical liquid crystal lens," Jpn. J. Appl. Phys. Part 1 43, 652-653 (2004). [CrossRef]
  14. T. Nose and S. Sato, "A liquid crystal microlens obtained with a nonuniform electric field," Liq. Cryst. 5, 1425-1433 (1989). [CrossRef]
  15. M. Ye and S. Sato, "Optical properties of liquid crystal lens of any size," Jpn. J. Appl. Phys. Part 2 41, L571-L573 (2002). [CrossRef]
  16. M. Ye and S. Sato, "Liquid crystal lens with focus movable along and off axis," Opt. Commun. 225, 277-280 (2003). [CrossRef]
  17. A. F. Naumov, M. Yu. Loktev, I. R. Guralnik, and G. Vdovin, "Liquid-crystal adaptive lenses with modal control," Opt. Lett. 23, 992-994 (1998). [CrossRef]
  18. I. R. Gural'nik and S. A. Samagin, "Optically controlled spherical liquid-crystal lens: theory and experiment," Quantum Electron. 33, 430-424 (2003). [CrossRef]
  19. L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer, 1994). [CrossRef]
  20. A. B. Golovin, S. V. Shiyanovskii, and O. D. Lavrentovich, "Fast switching dual-frequency liquid crystal optical retarder, driven by an amplitude and frequency modulated voltage," Appl. Phys. Lett. 83, 3864-3866 (2003). [CrossRef]
  21. S. Sato, "Applications of liquid crystals to variable-focusing lenses," Opt. Rev. 6, 471-485 (1999). [CrossRef]
  22. Y. Yin, M. Gu, A. B. Golovin, S. V. Shiyanovskii, and O. D. Lavrentovich, "Fast switching optical modulator based on dual frequency nematic cell," Mol. Cryst. Liq. Cryst. 421, 133-144 (2004). [CrossRef]
  23. M. Ye, B. Wang, and S. Sato, "Driving of liquid crystal lens without disclination occurring by applying in-plane electric field," Jpn. J. Appl. Phys. Part 1 42, 5086-5089 (2003). [CrossRef]
  24. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  25. M. Ye and S. Sato, "Liquid crystal lens with insulator layers for focusing light waves of arbitrary polarizations," Jpn. J. Appl. Phys. Part 1 42, 6439-6440 (2003). [CrossRef]
  26. L. G. Commander, S. E. Day, and D. R. Selviah, "Variable focal length microlenses," Opt. Commun. 177, 157-170 (2000). [CrossRef]
  27. M. Ye, S. Hayasaka, and S. Sato, "Liquid crystal lens array with hexagonal-hole-patterned electrodes," Jpn. J. Appl. Phys. Part 1 43, 6108-6111 (2004). [CrossRef]
  28. H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, "Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets," Opt. Commun. 247, 101-106 (2005). [CrossRef]
  29. H. Ren, J. R. Wu, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, "Hermaphroditic liquid-crystal microlens," Opt. Lett. 30, 376-378 (2005). [CrossRef] [PubMed]
  30. T. Krupenkin, S. Yang, and P. Mach, "Tunable liquid microlens," Appl. Phys. Lett. 82, 316-318 (2003). [CrossRef]
  31. S. Kuiper and B. H. W. Hendriks, "Variable-focus liquid lens for miniature cameras," Appl. Phys. Lett. 85, 1128-1130 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited