OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 19 — Jul. 1, 2006
  • pp: 4747–4755

Effective scattering coefficient of the cerebral spinal fluid in adult head models for diffuse optical imaging

Anna Custo, William M. Wells, III, Alex H. Barnett, Elizabeth M. C. Hillman, and David A. Boas  »View Author Affiliations


Applied Optics, Vol. 45, Issue 19, pp. 4747-4755 (2006)
http://dx.doi.org/10.1364/AO.45.004747


View Full Text Article

Enhanced HTML    Acrobat PDF (2397 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An efficient computation of the time-dependent forward solution for photon transport in a head model is a key capability for performing accurate inversion for functional diffuse optical imaging of the brain. The diffusion approximation to photon transport is much faster to simulate than the physically correct radiative transport equation (RTE); however, it is commonly assumed that scattering lengths must be much smaller than all system dimensions and all absorption lengths for the approximation to be accurate. Neither of these conditions is satisfied in the cerebrospinal fluid (CSF). Since line-of-sight distances in the CSF are small, of the order of a few millimeters, we explore the idea that the CSF scattering coefficient may be modeled by any value from zero up to the order of the typical inverse line-of-sight distance, or approximately 0.3 mm 1 , without significantly altering the calculated detector signals or the partial path lengths relevant for functional measurements. We demonstrate this in detail by using a Monte Carlo simulation of the RTE in a three-dimensional head model based on clinical magnetic resonance imaging data, with realistic optode geometries. Our findings lead us to expect that the diffusion approximation will be valid even in the presence of the CSF, with consequences for faster solution of the inverse problem.

© 2006 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.5280) Medical optics and biotechnology : Photon migration
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(170.6960) Medical optics and biotechnology : Tomography

History
Original Manuscript: November 4, 2005
Revised Manuscript: December 29, 2005
Manuscript Accepted: January 3, 2006

Virtual Issues
Vol. 1, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Anna Custo, William M. Wells III, Alex H. Barnett, Elizabeth M. C. Hillman, and David A. Boas, "Effective scattering coefficient of the cerebral spinal fluid in adult head models for diffuse optical imaging," Appl. Opt. 45, 4747-4755 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-19-4747


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Chernomordik, D. W. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, and A. Gandjbakhche, "Quantification of optical properties of a breast tumor using random walk theory," J. Biomed. Opt. 7, 80-87 (2002). [CrossRef] [PubMed]
  2. N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, "The role of diffuse optical spectroscopy in the clinical management of breast cancer," Dis. Markers 19, 95-105 (2003).
  3. R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, "Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI," Med. Phys. 32, 1128-1139 (2005). [CrossRef] [PubMed]
  4. X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, "In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green," Med. Phys. 30, 1039-1147 (2003). [CrossRef] [PubMed]
  5. P. Taroni, G. Danesini, A. Torricelli, A. Pifferi, L. Spinelli, and R. Cubeddu, "Clinical trial of time-resolved scanning optical mammography at 4 wavelengths between 683 and 975 nm," J. Biomed. Opt. 9, 464-473 (2004). [CrossRef] [PubMed]
  6. D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Moller, C. Stroszczynski, J. Stossel, B. Wassermann, P. M. Schlag, and H. Rinneberg, "Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography," Phys. Med. Biol. 49, 1165-1181 (2004). [CrossRef] [PubMed]
  7. S. Srinivasan, B. W. Pogue, S. Jing, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography," Proc. Natl. Acad. Sci. U.S.A. 100, 12349-12354 (2003). [CrossRef] [PubMed]
  8. A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, "Tomographic optical breast imaging guided by three-dimensional mammography," Appl. Opt. 42, 5181-5190 (2003). [CrossRef] [PubMed]
  9. M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, "Frequency-domain techniques enhance optical mammography: initial clinical results," Proc. Natl. Acad. Sci. U.S.A. 94, 6468-6473 (1997). [CrossRef] [PubMed]
  10. A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, "Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults," Neurosci. Lett. 154, 101-104 (1993). [CrossRef] [PubMed]
  11. Y. Hoshi and M. Tamura, "Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man," Neurosci. Lett. 150, 5-8 (1993). [CrossRef] [PubMed]
  12. M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, and D. A. Boas, "Hemodynamic evoked response of the sensorimotor cortex measured non-invasively with near infrared optical imaging," Psychophysiology 40, 548-560 (2003). [CrossRef] [PubMed]
  13. H. Koizumi, T. Yamamoto, A. Maki, Y. Yamashita, H. Sato, H. Kawaguchi, and N. Ichikawa, "Optical topography: practical problems and new applications," Appl. Opt. 42, 3054-3062 (2003). [CrossRef] [PubMed]
  14. M. Pena, A. Maki, D. Kovacic, G. Dehaene-Lambertz, H. Koizumi, F. Bouquet, and J. Mehler, "Sounds and silence: an optical topography study of language recognition at birth," Proc. Natl. Acad. Sci. U.S.A. 100, 11702-11705 (2003). [CrossRef] [PubMed]
  15. E. Gratton, V. Toronov, U. Wolf, M. Wolf, and A. Webb, "Measurement of brain activity by near-infrared light," J. Biomed. Opt. 10, 011008 (2005). [CrossRef]
  16. T. Wilcox, H. Bortfeld, R. Woods, E. Wruck, and D. A. Boas, "Using near-infrared spectroscopy to assess neural activation during object processing in infants," J. Biomed. Opt. 10, 011010 (2005). [CrossRef] [PubMed]
  17. S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl. 15, 41-93 (1999). [CrossRef]
  18. M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging(Institute of Physics, 1998).
  19. R. L. Barbour, H. L. Graber, J. Change, S. S. Barbour, P. C. Koo, and R. Aronson, "MRI-guided optical tomography: prospects and computation for a new imaging method," IEEE Comput. Sci. Eng. 2, 63-77 (1995). [CrossRef]
  20. B. W. Pogue and K. D. Paulsen, "High-resolution near-infrared tomographic imaging simulations of the rat cranium by use of a priori magnetic resonance imaging structural information," Opt. Lett. 23, 1716-1718 (1998). [CrossRef]
  21. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, "MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions," Neoplasia 4, 347-354 (2002). [CrossRef] [PubMed]
  22. D. A. Boas and A. M. Dale, "Simulation study of magnetic resonance imaging-guided cortically constrained diffuse optical tomography of human brain function," Appl. Opt. 44, 1957-1968 (2005). [CrossRef] [PubMed]
  23. E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, "Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head," Appl. Opt. 36, 21-31 (1997). [CrossRef] [PubMed]
  24. Y. Fukui, Y. Ajichi, and E. Okada, "Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models," Appl. Opt. 42, 2881-2887 (2003). [CrossRef] [PubMed]
  25. T. Hayashi, Y. Kashio, and E. Okada, "Hybrid Monte Carlo-diffusion method for light propagation in tissue with a low-scattering region," Appl. Opt. 42, 2888-2896 (2003). [CrossRef] [PubMed]
  26. T. Koyama, A. Iwasaki, Y. Ogoshi, and E. Okada, "Practical and adequate approach to modeling light propagation in an adult head with low-scattering regions by use of diffusion theory," Appl. Opt. 44, 2094-2103 (2005). [CrossRef] [PubMed]
  27. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite element approach for modeling photon transport in tissue," Med. Phys. 20, 299-309 (1993). [CrossRef] [PubMed]
  28. S. R. Arridge, H. Dehghani, M. Schweiger, and E. Okada, "The finite element model for the propagation of light in scattering media: a direct method for domains with nonscattering regions," Med. Phys. 27, 252-264 (2000). [CrossRef] [PubMed]
  29. M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, "An investigation of light transport through scattering bodies with non-scattering regions," Phys. Med. Biol. 41, 767-783 (1996). [CrossRef] [PubMed]
  30. A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, "Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues," Phys. Med. Biol. 43, 1285-1302 (1998). [CrossRef] [PubMed]
  31. E. M. C. Hillman, Experimental and theoretical investigations of near infrared tomographic imaging methods and clinical applications (University College London, 2002). [PubMed]
  32. H. Dehghani, S. R. Arridge, M. Schweiger, and D. T. Delpy, "Optical tomography in the presence of void regions," J. Opt. Soc. Am. A 17, 1659-1670 (2000). [CrossRef]
  33. E. Okada and D. T. Delpy, "Effect of discrete scatterers in CSF layer on optical path length in the brain," in Photon Migration, Diffuse Spectroscopy, and Optical Coherence Tomography: Imaging and Functional Assessment , S. Andersson-Engels and J. G. Fujimoto, eds., Proc. SPIE 4160, 196-203 (2000).
  34. G. Bal and K. Ren, "Generalized diffusion model in optical tomography with clear layers," J. Opt. Soc. A 20, 2355-2364 (2003). [CrossRef]
  35. J. D. Riley, S. R. Arridge, Y. Chrysanthou, H. Dehghani, E. M. Hillman, and M. Schweiger, "Radiosity diffusion model in 3D," in Photon Migration, Optical Coherence Tomography, and Microscopy , S. Andersson-Engels and M. F. Kaschke, eds., Proc. SPIE 4431, 153-164 (2001).
  36. H. Dehghani, D. T. Delpy, and S. R. Arridge, "Photon migration in non-scattering tissue and the effects on image reconstruction," Phys. Med. Biol. 44, 2897-2906 (1999). [CrossRef]
  37. A. H. Barnett, J. P. Culver, A. G. Sorensen, A. Dale, and D. A. Boas, "Robust inference of baseline optical properties of the human head with 3D segmentation from magnetic resonance imaging," Appl. Opt. 42, 3095-3108 (2003). [CrossRef]
  38. E. Okada and D. T. Delpy, "Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer," Appl. Opt. 42, 2906-2914 (2003). [CrossRef] [PubMed]
  39. K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, and A. Villringer, "Cross talk in the Lambert-Beer calculation for near-infrared wavelengths estimated by Monte Carlo simulations," J. of Biomed. Opt. 7, 51-59 (2002). [CrossRef]
  40. J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorenson, and D. A. Boas, "Improved sensitivity to cerebral dynamics during brain activation with a time-gated optical system: analytical model and experimental validation," J. Biomed. Opt. 10, 011013 (2005). [CrossRef]
  41. B. Montcel, R. Chabrier, and P. Poulet, "Detection of cortical activation with time-resolved diffuse optical methods," Appl. Opt. 44, 1942-1947 (2005). [CrossRef] [PubMed]
  42. E. Okada and D. T. Delpy, "Effect of a nonscattering layer on time-resolved photon migration paths, in Photon Propagation in Tissues IV , D. A. Benaron, B. Chance, M. Ferrari, and M. Kohl-Bareis, eds., Proc. SPIE 3566, 2-9 (1998).
  43. D. A. Boas, A. M. Dale, and M. A. Franceschini, "Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy," Neuroimage 23, S275-288 (2004). [CrossRef] [PubMed]
  44. L. Wang, S. L. Jacques, and L. Zheng, "MCML-Monte Carlo modeling of light transport in multi-layered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995). [CrossRef] [PubMed]
  45. D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, "Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head," Opt. Express 10, 159-170 (2002). [PubMed]
  46. D. A. Boas, G. Strangman, J. P. Culver, R. D. Hoge, G. Jasdzewski, R. A. Poldrack, B. R. Rosen, and J. B. Mandeville, "Can the cerebral metabolic rate of oxygen be estimated with near-infrared spectroscopy?" Phys. Med. Biol. 48, 2405-2418 (2003). [CrossRef] [PubMed]
  47. J. Steinbrink, H. Wabnitz, H. Obring, A. Villringer, and H. Rinneberg, "Determining changes in NIR absorption using a layered model of the human head," Phys. Med. Biol. 46, 879-896 (2001). [CrossRef] [PubMed]
  48. G. Strangman, M. A. Franceschini, and D. A. Boas, "Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters," Neuroimage 18, 865-879 (2003). [CrossRef] [PubMed]
  49. E. Okada, M. Schweiger, S. R. Arridge, M. Firbank, and D. T. Delpy, "Experimental validation of Monte Carlo and finite-element methods for the estimation of the optical path length in inhomogeneous tissue," Appl. Opt. 35, 3362-3371 (1996). [CrossRef] [PubMed]
  50. H. Dehghani and D. T. Delpy, "Near-infrared spectroscopy of the adult head: Effect of scattering and absorbing obstructions in the cerebrospinal fluid layer on light distribution in the tissue," Appl. Opt. 39, 4721-4729 (2000). [CrossRef]
  51. S. Takahshi and Y. Yamada, "Simulation of 3D light propagation in a layered head model including a clear CSF layer," OSA Trends Opt. Photonics Ser. 21, 2-6 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited