OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 19 — Jul. 1, 2006
  • pp: 4776–4790

Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet–visible diffuse reflectance spectra

Quan Liu and Nirmala Ramanujam  »View Author Affiliations

Applied Optics, Vol. 45, Issue 19, pp. 4776-4790 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (1978 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A method for estimating the optical properties of two-layered media (such as squamous epithelial tissue) over a range of wavelengths in the ultraviolet–visible spectrum is proposed and tested with Monte Carlo modeling. The method first used a fiber-optic probe with angled illumination and the collection fibers placed at a small separation ( 300   μm ) to restrict the transport of detected light to the top layer. A Monte Carlo-based inverse model for a homogeneous medium was employed to estimate the top layer optical properties from the measured diffuse reflectance spectrum. Then a flat-tip probe with a large source-detector separation ( 1000   μm ) was used to detect diffuse reflectance preferentially from the bottom layer. A second Monte Carlo-based inverse model for a two-layered medium was applied to estimate the bottom layer optical properties, as well as the top layer thickness, given that the top layer optical properties have been estimated. The results of Monte Carlo validation show that this method works well for an epithelial tissue model with a top layer thickness ranging from 200   to   500   μm . For most thicknesses within this range, the absorption coefficients were estimated to within 15 % of the true values, the reduced scattering coefficients were estimated to within 20 % and the top layer thicknesses were estimated to within 20 % . The application of a variance reduction technique to the Monte Carlo modeling proved to be effective in improving the accuracy with which the optical properties are estimated.

© 2006 Optical Society of America

OCIS Codes
(290.7050) Scattering : Turbid media
(300.6540) Spectroscopy : Spectroscopy, ultraviolet
(300.6550) Spectroscopy : Spectroscopy, visible

Original Manuscript: June 17, 2005
Revised Manuscript: November 26, 2005
Manuscript Accepted: November 29, 2005

Virtual Issues
Vol. 1, Iss. 8 Virtual Journal for Biomedical Optics

Quan Liu and Nirmala Ramanujam, "Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra," Appl. Opt. 45, 4776-4790 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. M. Gill, G. Palmer, and N. Ramanujam, "Steady-state fluorescence imaging of neoplasia," Methods Enzymol., 361, 452-481 (2003). [CrossRef] [PubMed]
  2. N. Ramanujam, "Fluorescence spectroscopy in vivo," in Encyclopedia of Analytical Chemistry, R.Meyers, ed. (Wiley, 2000), pp. 20-56.
  3. I. Saidi, S. Jacques, and F. Tittel, "Mie and Rayleigh modeling of visible-light scattering in neonatal skin," Appl. Opt. 34, 7410-7418 (1995). [CrossRef] [PubMed]
  4. R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, and R. Richards-Kortum, "Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia," Photochem. Photobiol. 73, 636-641 (2001). [CrossRef] [PubMed]
  5. I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards-Kortum, "Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy," Photochem. Photobiol. 77, 550-555 (2003). [CrossRef] [PubMed]
  6. N. Ramanujam, R. Richards-Kortum, S. Thomsen, A. Mahadevan-Jansen, and M. Follen, "Low temperature fluorescence imaging of freeze-trapped human cervical tissue," Opt. Express 8, 335-343 (2000). [CrossRef]
  7. T. Collier, D. Arifler, A. Malpica, M. Follen, and R. Richards-Kortum, "Determination of epithelial tissue scattering coefficient using confocal microscopy," IEEE J. Sel. Top. Quantum Electron. 9, 307-313 (2003). [CrossRef]
  8. L. Burke, D. A. Antonioli, and B. S. Duatman, Colposcopy: Text and Atlas (Appleton & Large, 1991).
  9. T. J. Farrell, M. S. Patterson, and B. Wilson, "A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo," Med. Phys. 19, 879-888 (1992). [CrossRef] [PubMed]
  10. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1999). [CrossRef] [PubMed]
  11. E. Gratton and J. B. Fishkin, "Optical spectroscopy of tissuelike phantoms using photon density waves," Comments Mol. Cell. Biophys. 8, 307 (1995).
  12. A. H. Hielscher, S. L. Jacques, W. Lihong, and F. K. Tittel, "The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues," Phys. Med. Biol. 40, 1957-1975 (1995). [CrossRef] [PubMed]
  13. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, "Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue," Appl. Opt. 35, 2304-2314 (1996). [CrossRef] [PubMed]
  14. F. Martelli, D. Contini, A. Taddeucci, and G. Zaccanti, "Photon migration through a turbid slab described by a model based on diffusion approximation. II. Comparison with Monte Carlo results," Appl. Opt. 36, 4600-4612 (1997). [CrossRef] [PubMed]
  15. T. H. Pham, F. Bevilacqua, T. Spott, J. S. Dam, B. J. Tromberg, and S. Andersson-Engels, "Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging," Appl. Opt. 39, 6487-6497 (2000). [CrossRef]
  16. T. J. Farrell, M. S. Patterson, and M. Essenpreis, "Influence of layered tissue architecture on estimates of tissue optical properties obtained from spatially resolved diffuse reflectometry," Appl. Opt. 37, 1958-1972 (1998). [CrossRef]
  17. A. Kienle and T. Glanzmann, "In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model," Phys. Med. Biol. 44, 2689-2702 (1999). [CrossRef] [PubMed]
  18. F. Martelli, A. Sassaroli, Y. Yamada, and G. Zaccanti, "Method for measuring the diffusion coefficient of homogeneous and layered media," Opt. Lett. 25, 1508-1510 (2000). [CrossRef]
  19. T. H. Pham, T. Spott, L. O. Svaasand, and B. J. Tromberg, "Quantifying the properties of two-layer turbid media with frequency-domain diffuse reflectance," Appl. Opt. 39, 4733-4745 (2000). [CrossRef]
  20. G. Alexandrakis, D. R. Busch, G. W. Faris, and M. S. Patterson, "Determination of the optical properties of two-layer turbid media by use of a frequency-domain hybrid Monte Carlo diffusion model," Appl. Opt. 40, 3810-3821 (2001). [CrossRef]
  21. D. E. Hyde, T. J. Farrell, M. S. Patterson, and B. C. Wilson, "A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations," Phys. Med. Biol. 46, 369-383 (2001). [CrossRef] [PubMed]
  22. Z. Rong, W. Verkruysse, B. Choi, J. A. Viator, J. Byungjo, L. O. Svaasand, G. Aguilar, and J. S. Nelson, "Determination of human skin optical properties from spectrophotometric measurements based on optimization by genetic algorithms," J. Biomed. Opt. 10, 24030 (2005). [CrossRef]
  23. F. Martelli, S. Del Bianco, G. Zaccanti, A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, and R. Cubeddu, "Phantom validation and in vivo application of an inversion procedure for retrieving the optical properties of diffusive layered media from time-resolved reflectance measurements," Opt. Lett. 29, 2037-2039 (2004). [CrossRef] [PubMed]
  24. C. K. Hayakawa, T. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, "Peturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues," Opt. Lett. 26, 1335-1337 (2001). [CrossRef]
  25. S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, "Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements," J. Biomed. Opt. 9, 511-522 (2004). [CrossRef] [PubMed]
  26. Y. S. Fawzi, A.-B. M. Youssef, M. H. El-Batanony, and Y. M. Kadah, "Determination of the optical properties of a two-layer tissue model by detecting photons migrating at progressively increasing depths," Appl. Opt. 42, 6398-6411 (2003). [CrossRef] [PubMed]
  27. Q. Liu and N. Ramanujam, "Experimental proof of the feasibility of using an angled fiber-optic probe for depth-sensitive fluorescence spectroscopy of turbid media," Opt. Lett. 29, 2034-2036 (2004). [CrossRef] [PubMed]
  28. L. Nieman, A. Myakov, J. Aaron, and K. Sokolov, "Optical sectioning using a fiber probe with an angled illumination-collection geometry: evaluation in engineered tissue phantoms," Appl. Opt. 43, 1308-1319 (2004). [CrossRef] [PubMed]
  29. U. Utzinger and R. R. Richards-Kortum, "Fiber optic probes for biomedical optical spectroscopy," J. Biomed. Opt. 8, 121-147 (2003). [CrossRef] [PubMed]
  30. C. Zhu, Q. Liu, and N. Ramanujam, "Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation," J. Biomed. Opt. 8, 237-247 (2003). [CrossRef] [PubMed]
  31. T. J. Pfefer, L. S. Matchette, A. M. Ross, and M. N. Ediger, "Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design," Opt. Lett. 28, 120-122 (2003). [CrossRef] [PubMed]
  32. L. Wang, S. L. Jacques, and L. Zheng, "MCML--Monte Carlo modeling of light transport in multi-layered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995). [CrossRef] [PubMed]
  33. F. C. Bohren and R. D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  34. G. M. Palmer and N. Ramanujam, "Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms," Appl. Opt. 45, 1062-1071 (2006). [CrossRef] [PubMed]
  35. N. Salas, Jr., F. Manns, P. F. Chapon, P. J. Milne, S. G. Mendoza, D. B. Denham, J.-M. A. Parel, and D. S. Robinson, "Development of a tissue phantom for experimental studies on laser interstitial thermotherapy of breast cancer," in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems X, R. R. Anderson, K. E. Bartels, L. S. Bass, C. G. Garrett, K. W. Gregory, N. Kollias, H. Lui, R. S. Malek, G. M. Peavy, H.-D. Reidenbach, L. Reinisch, D. S. Robinson, L. P. Tate, E. A. Trowers, and T. A. Woodward, eds. Proc. SPIE 3907, 623-631 (2000).
  36. A. J. Durkin, S. Jaikumar, and R. Richards-Kortum, "Optically dilute, absorbing and turbid phantoms for fluorescence spectrocopy of homogeneous and Inhomogeneous Samples," Appl. Spectros. 47, 2114-2121 (1993). [CrossRef]
  37. R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, "Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications," J. Biomed. Opt. 6, 385-396 (2001). [CrossRef] [PubMed]
  38. T. P. Moffitt, and S. A. Prahl, "Sized-fiber reflectometry for measuring local optical properties," IEEE J. Sel. Top. Quantum Electron. 7, 952-958 (2001). [CrossRef]
  39. A. Miller, MieTab program version 8.31, http://amiller.nmsu.edu/mietab.html.
  40. R. Graaff, M. H. Koelink, F. F. M. de Mul, W. G. Zijlstra, A. C. M. Dassel, and J. G. Aarnoudse, "Condensed Monte Carlo simulations for the description of light transport," Appl. Opt. 32, 426-434 (1993). [CrossRef] [PubMed]
  41. A. Kienle and M. S. Patterson, "Determination of the optical properties of turbid media from a single Monte Carlo simulation," Phys. Med. Biol. 41, 2221-2227 (1996). [CrossRef] [PubMed]
  42. P. Thueler, I. Charvet, F. Bevilacqua, P. Marquet, P. Meda, B. Vermeulen, C. Depeursinge, M. S. Ghislain, and G. Ory, "In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties," J. Biomed. Opt. 8, 495 (2003). [CrossRef] [PubMed]
  43. X-5 Monte Carlo Team, "MCNP Vol I: Overview and Theory," http://mcnp-green.lanl.gov/manual.html (Diagnostics Applications Group, Los Alamos National Laboratory, 2005), pp. 130-158.
  44. F. Bevilacqua, and C. Depeursinge, "Monte Carlo study of diffuse reflectance at source-detector separations close to one transport mean free path," J. Opt. Soc. Am. A 16, 2935-2945 (1999). [CrossRef]
  45. R. A. Schwarz, D. Arifler, S. K. Chang, I.Pavlova, I. A. Hussain, V. Mack, B. Knight, R. Richards-Kortum, and A. M. Gillenwater, "Ball lens coupled fiber-optic probe for depth-resolved spectroscopy of epithelial tissue," Opt. Lett. 30, 1159-1161 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited