OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 2 — Jan. 10, 2006
  • pp: 271–280

Two-wave-plate compensator method for full-field retardation measurements

Carole C. Montarou, Thomas K. Gaylord, Brent L. Bachim, Alexei I. Dachevski, and Abhiruchi Agarwal  »View Author Affiliations


Applied Optics, Vol. 45, Issue 2, pp. 271-280 (2006)
http://dx.doi.org/10.1364/AO.45.000271


View Full Text Article

Enhanced HTML    Acrobat PDF (1005 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The two-wave-plate compensator (TWC) method is expanded for full-field retardation measurements by use of a polarization microscope. The sample image is projected onto a CCD camera connected to a computer, allowing the retardation to be measured at all pixels. The retardation accuracy of this implementation of the TWC is evaluated to be 0.06 nm . The method is applied to polarization-maintaining fibers and long-period fiber gratings. The measured retardation is in good agreement with the crossed-polarizer images of the fibers. The method achieves a spatial resolution of 0.45 µm and a retardation resolution of 0.07 nm . The full-field TWC method can thus be a useful tool for characterizing and monitoring the fabrication of optical devices.

© 2006 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(260.1440) Physical optics : Birefringence

ToC Category:
Instrumentation, Measurement, and Metrology

Citation
Carole C. Montarou, Thomas K. Gaylord, Brent L. Bachim, Alexei I. Dachevski, and Abhiruchi Agarwal, "Two-wave-plate compensator method for full-field retardation measurements," Appl. Opt. 45, 271-280 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-2-271


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Kitamura, S. Kimura, Y. Miyazawa, Y. Mori, and O. Kamada, "Stress-birefringence associated with facets of rare-earth garnets grown from the melt; a model and measurement of stress-birefringence observed in thin sections," J. Cryst. Growth 62, 351-359 (1983). [CrossRef]
  2. K. Kitamura, Y. Miyazawa, Y. Mori, S. Kimura, and M. Higuchi, "Origin of difference in lattice spacings between on- and off-facet regions of rare-earth garnets grown from the melt," J. Cryst. Growth 64, 207-216 (1983). [CrossRef]
  3. K. Kitamura, N. Lyi, and S. Kimura, "Growth-induced optical anisotropy of epitaxial garnet films grown on (110)-oriented substrates," J. Appl. Phys. 60, 1486-1489 (1986). [CrossRef]
  4. J. M. Desse, "Three-color differential interferometry," Appl. Opt. 36, 7150-7156 (1997).
  5. I. Bloomer and R. Mirsky, "Broadband spectrophotometry: a fast, simple, accurate tool," Photonics Spectra 36, 86-92 (2002).
  6. A. Redner, "Photoelastic measurements by means of computer-assisted spectral-contents analysis," Exp. Mech. 25, 148-153 (1985).
  7. A. Redner, "Photoelastic measurements of residual stresses for NDE," in Photomechanics and Speckle Metrology, F.-P. Chiang, ed., Proc. SPIE 814, 16-19 (1987).
  8. R. Oldenbourg, E. D. Salmon, and P. T. Tran, "Birefringence of single and bundled microtubules," Biophys. J. 74, 645-654 (1998).
  9. K. Katoh, K. Hammar, P. Smith, and R. Oldenbourg, "Birefringence imaging directly reveals architectural dynamics of filamentous actin in living growth cones," Mol. Biol. Cell 10, 197-210 (1999).
  10. B. Cense and T. C. Chen, "In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography," Opt. Lett. 27, 1610-1612 (2002).
  11. R. Kasahra, M. Itoh, Y. Hida, T. Saida, Y. Inoue, and Y. Hibino, "Birefringence compensated silica-based waveguide with undercladding ridge," Electron. Lett. 38, 1178-1179 (2002). [CrossRef]
  12. C. Dragone, "Optimum design of a planar array of tapered waveguides," J. Opt. Soc. Am. A 7, 2081-2093 (1990).
  13. C. Dragone, "An N×N optical multiplexer using a planar arrangement of two star couplers," IEEE Photon. Technol. Lett. 3, 812-815 (1991). [CrossRef]
  14. M. Zirngibl, C. Dragone, and C. H. Joyner, "Demonstration of a 15×15 arrayed waveguide multiplexer on InP," IEEE Photon. Technol. Lett. 4, 1250-1253 (1992). [CrossRef]
  15. M. Y. Park, S. C. Gwak, K. S. Choi, J. K. Oh, H. J. Lee, and G. H. Song, "Reduction in polarisation-dependent loss and birefringence of arrayed-waveguide grating by adaptable thermal quenching," Electron. Lett. 39, 54-55 (2003). [CrossRef]
  16. S. H. Jeong, T. Mizumoto, K. Nakatsuhara, M. Takenaka, and Y. Nakano, "Deep-ridge distributed feedback waveguide for polarisation independent all-optical switching," Electron. Lett. 37, 498-499 (2001). [CrossRef]
  17. S. H. Jeong, H. C. Kim, T. Mizumoto, J. Wiedmann, S. Arai, M. Takenaka, and Y. Nakano, "Polarisation insensitive deep-ridge vertical-groove DFB waveguide for all-optical switching," Electron. Lett. 37, 1387-1389 (2001). [CrossRef]
  18. G. W. Scherer, "Thermal stress in a cylinder: application to optical waveguide blanks," J. Non-Cryst. Solids 34, 223-238 (1979). [CrossRef]
  19. G. W. Scherer, "Stress-induced index profile distortion in optical waveguides," Appl. Opt. 19, 2000-2006 (1980).
  20. G. W. Scherer, "Stress-optical effects in optical waveguides," J. Non-Cryst. Solids 38, 201-204 (1980). [CrossRef]
  21. K. Dossou, S. LaRochelle, and M. Fontaine, "Numerical analysis of the contribution of the transverse asymmetry in the photo-induced index change profile to the birefringence of optical fiber," J. Lightwave Technol. 20, 1463-1469 (2002). [CrossRef]
  22. P. L. Chu and T. Whitbread, "Measurement of stresses in optical fiber and preform," Appl. Opt. 21, 4241-4245 (1982).
  23. X. Zhao, C. Li, and Y. Z. Xu, "Stress-induced birefringence control in optical planar waveguides," Opt. Lett. 28, 564-566 (2003).
  24. S. Y. Cheng, K. S. Chiang, and H. P. Chan, "Birefringence in benzocyclobutene strip optical waveguides," IEEE Photon. Technol. Lett. 15, 700-702 (2003). [CrossRef]
  25. B. L. Bachim and T. K. Gaylord, "Polarization-dependent loss and birefringence in long-period fiber gratings," Appl. Opt. 42, 6816-6823 (2003).
  26. D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, "Long-period fibre grating fabrication with focused CO2 laser pulses," Electron. Lett. 34, 302-303 (1998). [CrossRef]
  27. D. D. Davis, T. K. Gaylord, E. N. Glytsis, and S. C. Mettler, "Very-high-temperature stable CO2-laser-induced long-period fibre gratings," Electron. Lett. 35, 740-742 (1999). [CrossRef]
  28. B. H. Kim, Y. Park, T. J. Ahan, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, "Residual stress relaxation in the core of optical fiber by CO2 laser irradiation," Opt. Lett. 26, 1657-1659 (2001).
  29. B. H. Kim, T. J. Ahan, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, "Effect of CO2 laser irradiation on the refractive-index change in optical fibers," Appl. Opt. 41, 3809-3815 (2002).
  30. Y. Park, T. J. Ahn, Y. H. Kim, W. T. Han, U. C. Paek, and D. Y. Kim, "Measurement method for profiling the residual stress and the strain-optic coefficient of an optical fiber," Appl. Opt. 41, 21-26 (2001).
  31. T. C. Oakberg, "Measurement of low-level strain birefringence in optical elements using a photoelastic modulator," in International Symposium on Polarization Analysis and Applications to Device Technology, T. Yoshizawa and H. Yokota, eds., Proc. SPIE 2873, 17-20 (1996).
  32. B. Wang, "An improved method for measuring low-level linear birefringence in optical materials," in Inorganic Optical Materials, A. J. Marker III, ed., Proc. SPIE 3424, 120-124 (1998). [CrossRef]
  33. T. C. Oakberg and A. J. Bryan, "Use of detectors with photoelastic modulators," in Polarization Measurement Analysis and Applications V, D. H. Goldstein and D. B. Chenault, eds., Proc. SPIE 4819, 1-8 (2002). [CrossRef]
  34. B. Wang and T. Oakberg, "A new instrument for measuring both magnitude and angle of low level linear birefringence," Rev. Sci. Instrum. 70, 3847-3854 (1999). [CrossRef]
  35. B. Wang, "Accuracy assessment of a linear birefringence measurement system using a Soleil-Babinet compensator," Rev. Sci. Instrum. 72, 4066-4070 (2001). [CrossRef]
  36. B. Wang, "Linear birefringence measurement instrument using two photoelastic modulators," Opt. Eng. 41, 981-987 (2002). [CrossRef]
  37. B. Wang, J. List, and R. R. Rockwell, "A Stokes polarimeter using two photoelastic modulators," in Polarization Measurement Analysis and Applications V, D. H. Goldstein and D. B. Chenault, eds., Proc. SPIE 4819, 1-8 (2002). [CrossRef]
  38. R. Oldenbourg and G. Mei, "New polarized light microscope with precision universal compensator," J. Microsc. 180, 140-147 (1995).
  39. M. Schribak and R. Oldenbourg, "Techniques for fast and sensitive measurements of two-dimensional birefringence distributions," Appl. Opt. 42, 3009-3017 (2002).
  40. K. W. Raine, R. Feced, S. E. Kanellopoulos, and V. A. Handerek, "Measurement of axial stress at high spatial resolution in ultraviolet-exposed fibers," Appl. Opt. 38, 1086-1095 (1999).
  41. Y. Park, U. C. Paek, and D. Y. Kim, "Complete determination of the stress tensor of a polarization-maintaining fiber by photoelastic tomography," Opt. Lett. 27, 1217-1219 (2002).
  42. Y. Park, U. C. Paek, and D. Y. Kim, "Determination of stress-induced intrinsic birefringence in a single-mode fiber by measurement of the two-dimensional stress profile," Opt. Lett. 27, 1291-1293 (2002).
  43. Y. Park, U. C. Paek, and D. Y. Kim, "Characterization of a stress-applied polarization-maintaining (PM) fiber through photoelastic tomography," J. Lightwave Technol. 21, 997-1004 (2003). [CrossRef]
  44. C. C. Montarou and T. K. Gaylord, "Two-waveplate compensator method for single-point retardation measurements," Appl. Opt. 43, 6580-6595 (2004). [CrossRef]
  45. J. Noda, K. Okamoto, and Y. Sasaki, "Polarization-maintaining fibers and their applications," J. Lightwave Technol. 4, 1071-1089 (1986).
  46. C. S. Kim, Y. Han, B. H. Lee, W. T. Han, U. C. Paek, and Y. Chung, "Induction of the refractive index change in B-doped optical fibers through relaxation of the mechanical stress," Opt. Commun. 185, 337-342 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited