OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 2 — Jan. 10, 2006
  • pp: 372–376

Temperature stability of a dichroic atomic vapor laser lock

Jessica M. Reeves, Ofir Garcia, and Charles A. Sackett  »View Author Affiliations

Applied Optics, Vol. 45, Issue 2, pp. 372-376 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (213 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have investigated the temperature stability of the dichroic atomic vapor laser lock laser frequency lock method. We find that, in general, the lock exhibits significant temperature sensitivity, leading to laser frequency drifts as large as tens of MHz∕K. However, for certain configurations of the optical elements of the system, this temperature dependence is reduced to below 1   MHz / K . These temperature-independent points can be found across a broad range of frequencies. We present a numerical model that reproduces the general behavior of the system.

© 2006 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(300.6370) Spectroscopy : Spectroscopy, microwave

ToC Category:
Lasers and Laser Optics

Jessica M. Reeves, Ofir Garcia, and Charles A. Sackett, "Temperature stability of a dichroic atomic vapor laser lock," Appl. Opt. 45, 372-376 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Cheron, H. Gilles, J. Hamel, O. Moreau, and H. Sorel, "Laser frequency stabilization using Zeeman effect," J. Phys. III 4, 401-406 (1994). [CrossRef]
  2. K. L. Corwin, Z.-T. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman, "Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor," Appl. Opt. 37, 3295-3298 (1998). [CrossRef]
  3. M. A. Clifford, G. P. T. Lancaster, R. S. Conroy, and K. Dholakia, "Stabilization of an 852 nm extended cavity diode laser using the Zeeman effect," J. Mod. Opt. 47, 1933-1940 (2000). [CrossRef]
  4. N. Beverini, E. Maccioni, P. Marsili, A. Ruffini, and F. Sorrentino, "Frequency stabilization of a diode laser on the Cs D2 resonance line by the Zeeman effect in a vapor cell," Appl. Phys. B 73, 133-138 (2001).
  5. K. R. Overstreet, J. Franklin, and J. P. Shaffer, "Zeeman effect spectroscopically locked Cs diode laser system for atomic physics," Rev. Sci. Instrum. 75, 4749-4753 (2004). [CrossRef]
  6. D. J. Gauthier, Duke University, Durham, N.C. 27708 (private communication).
  7. W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer, 1996).
  8. S. Park, H. Lee, T. Kwon, and H. Cho, "Dispersion-like signals in velocity-selective saturated-absorption spectroscopy," Opt. Commun. 192, 49-55 (2001). [CrossRef]
  9. C. Sukenik, H. Busch, and M. Shiddiq, "Modulation-free laser frequency stabilization and detuning," Opt. Commun. 203, 133-137 (2002). [CrossRef]
  10. N. Robins, B. Slagmolen, D. Shaddock, J. Close, and M. Gray, "Interferometric, modulation-free laser stabilization," Opt. Lett. 27, 1905-1907 (2002). [CrossRef]
  11. G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, "Laser frequency stabilization by Doppler-free magnetic dichroism," Appl. Phys. B 75, 613-619 (2002). [CrossRef]
  12. T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. Tino, "Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking," Eur. Phys. J. D 22, 279-283 (2003).
  13. V. Yashchuk, D. Budker, and J. Davis, "Laser frequency stabilization using linear magneto-optics," Rev. Sci. Instrum. 71, 341-346 (2000). [CrossRef]
  14. F. G. Lether, "Constrained near-minimax rational approximations to Dawson's integral," Appl. Math. Comp. 88, 267-274 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited