OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 20 — Jul. 10, 2006
  • pp: 4927–4932

Narrowband Bragg reflectors in Ti:LiNbO3 optical waveguides

Ryoung-Han Kim, Jun Zhang, Ohannes Eknoyan, Henry F. Taylor, and Terry L. Smith  »View Author Affiliations

Applied Optics, Vol. 45, Issue 20, pp. 4927-4932 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (1220 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Bragg grating reflectors etched in amorphous silicon overlay films have been integrated with Ti:LiNbO3 optical waveguides to obtain a narrow ( 0.05   nm ) reflectance spectrum with a > 20   dB dip in the transmittance spectrum. These results were realized at a wavelength of 1542 .7   nm for TE polarization on an x-cut, y-propagating substrate with gratings etched to a depth of 93   nm in a 105   nm thick silicon film over a length of 12 .5   mm . The reflectance in the channel waveguides is found to be strongly dependent on the depth of the etched grating. The effect of the Bragg waveguide loss factor on the transmittance and reflectance spectra is investigated by using a model for contradirectional coupling that includes an attenuation coefficient. The values for coupling constants κ and amplitude attenuation constants α of samples etched for different time durations to control the grating depths are obtained from the model through the use of the depth of the dips in the transmittance spectra and the spectral widths of the reflectance peaks. It is concluded that the corrugated Si overlay film increases the insertion loss by 2 .7   dB , and the loss is not significantly affected by the grating depth.

© 2006 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.3730) Integrated optics : Lithium niobate
(230.1480) Optical devices : Bragg reflectors
(230.7380) Optical devices : Waveguides, channeled

Original Manuscript: October 6, 2005
Manuscript Accepted: January 15, 2006

Ryoung-Han Kim, Jun Zhang, Ohannes Eknoyan, Henry F. Taylor, and Terry L. Smith, "Narrowband Bragg reflectors in Ti:LiNbO3 optical waveguides," Appl. Opt. 45, 4927-4932 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Shaw, W. J. Stewart, J. Heaton, and D. R. Wight, "Optical slow-wave resonant modulation in electro-optic GaAs/AlGaAs modulators," Electron. Lett. 35, 1557-1558 (1999). [CrossRef]
  2. H. F. Taylor, "Enhanced electrooptic modulation efficiency utilizing slow-wave optical propagation," J. Lightwave Technol. 17, 1875-1883 (1999). [CrossRef]
  3. J. B. Khurgin, J. U. Kang, and Y. J. Ding, "Ultrabroad-bandwidth electro-optic modulator based on a cascaded Bragg grating," Opt. Lett. 25, 70-72 (2000). [CrossRef]
  4. A. Melloni, F. Morichetti, and M. Martinelli, "Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures," Opt. Quantum Electron. 35, 365-379 (2003). [CrossRef]
  5. S. Hinz, D. Sandel, M. Yoshida-Dierolf, V. Mirvoda, R. Noé, G. Feise, H. Herrmann, R. Ricken, W. Sohler, H. Suche, F. Wehrmann, and R. Wessel, "Polarisation mode dispersion compensation for 6 ps, 40 Gbit/s pulses using distributed equaliser in LiNbO3," Electron. Lett. 35, 1185-1186 (1999). [CrossRef]
  6. B. K. Das, R. Ricken, and W. Sohler, "Integrated optical distributed feedback laser with Ti:Fe:Er:LiNbO3 waveguide," Appl. Phys. Lett. 82, 1515-1517 (2003). [CrossRef]
  7. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, 1997).
  8. S. Fouchet, F. R. Ladan, F. Huet, A. Carenco, M. Carrc, and Y. Gao, "Ti-implanted Bragg reflectors on LiNbO3:Ti stripe waveguides," Appl. Phys. Lett. 58, 1518-1520 (1991). [CrossRef]
  9. H. Feng, R. F. Tavlykaev, and R. V. Ramaswamy, "Record-high reflectance in narrowband low-loss Bragg reflectors with Si-on-LiNbO3 waveguides," Electron. Lett. 35, 1636-1637 (1999). [CrossRef]
  10. B. Wu, P. L. Chu, H. Hu, and Z. Xiong, "UV-induced surface-relief gratings on LiNbO3 channel waveguides," IEEE J. Quantum Electron. 35, 1369-1373 (1999). [CrossRef]
  11. Y. Sidorin and A. Cheng, "Integration of Bragg gratings on LiNbO3 channel waveguides using laser ablation," Electron. Lett. 37, 312-314 (2001). [CrossRef]
  12. B.-E. Benkelfat, R. Ferrière, B. Wacogne, and P. Mollier, "Technological implementation of Bragg grating reflectors in Ti:LiNbO3 waveguides by proton exchange," IEEE Photonics Technol. Lett. 14, 1430-1433 (2002). [CrossRef]
  13. S. Pissadakis, L. Reekie, M. N. Zervas, and J. S. Wilkinson, "Grating in indium oxide film overlayers on ion-exchanged waveguides by excimer laser micromachining," Appl. Phys. Lett. 78, 694-696 (2001). [CrossRef]
  14. R. F. Carson and T. E. Batchman, "Multimode phenomena in semiconductor-clad dielectric optical waveguide structure," Appl. Opt. 29, 2769-2780 (1990). [CrossRef] [PubMed]
  15. G. M. McWright, T. E. Batchman, and M. S. Stanziano, "Measurement and analysis of periodic coupling in silicon-clad planar waveguides," IEEE J. Quantum Electron. QE-18, 1765-1771 (1982). [CrossRef]
  16. J. Kim, G. Li, and K. A. Winick, "Design and fabrication of a glass waveguide optical add-drop multiplexer by use of an amorphous-silicon overlay distributed Bragg reflector," Appl. Opt. 43, 671-677 (2004). [CrossRef] [PubMed]
  17. K. O. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Technol. 15, 1263-1276 (1997). [CrossRef]
  18. D. C. Flanders, H. Kogelnik, R. V. Schmidt, and C. V. Shank, "Grating filters for thin-film optical waveguides," Appl. Phys. Lett. 24, 194-196 (1974). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited