OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 20 — Jul. 10, 2006
  • pp: 4933–4940

Multimode interference devices with input–output ports on the sides

David M. Mackie  »View Author Affiliations

Applied Optics, Vol. 45, Issue 20, pp. 4933-4940 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (754 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Multimode interference (MMI) devices are useful for power splitting and for the separation or combination of wavelengths or polarizations, usually in integrated optics. Input–output guides connect to the MMI region by ports. In all previously reported MMI devices, the input and output guides connect only to the ends of the MMI region; i.e., they are end ported. What is believed to be a novel arrangement of the input–output ports on MMI devices is described. By placing input–output ports either partially or entirely on the sides of the MMI region (i.e., side porting), a variety of benefits are achieved and a variety of new devices can be made.

© 2006 Optical Society of America

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(130.1750) Integrated optics : Components
(130.3120) Integrated optics : Integrated optics devices
(250.0250) Optoelectronics : Optoelectronics
(250.3140) Optoelectronics : Integrated optoelectronic circuits
(250.5300) Optoelectronics : Photonic integrated circuits

Original Manuscript: August 29, 2005
Revised Manuscript: January 23, 2006
Manuscript Accepted: January 31, 2006

David M. Mackie, "Multimode interference devices with input-output ports on the sides," Appl. Opt. 45, 4933-4940 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Bachmann, P. A. Besse, and H. Melchior, "General self-imaging properties in N × N multimode interference couplers including phase relations," Appl. Opt. 33, 3905-3911 (1994). [CrossRef] [PubMed]
  2. L. B. Soldano and E. C. M. Pennings, "Optical multimode interference devices based on self-imaging: principles and applications," J. Lightwave Technol. 13, 615-627 (1995). [CrossRef]
  3. M. Blahut and A. Opilski, "Multimode interference structures--new way of passive elements technology for photonics," Opto-Electron. Rev. 9, 293-300 (2001).
  4. E. T. Kunkee, C. Zmudzinski, L. J. Lembo, J. Leight, R. Johnson, F. Alvarez, D. Nichols, and J. C. Brock, "Analog signal splitting and amplification for optically-controlled phased-array antennas," in Optical Amplifiers and Their Applications, M. N. Zervas, A. E. Wilher, and S. Sasaki, eds., Vol. 16 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1997), pp. 209-212.
  5. E. T. Kunkee, C. Zmudzinski, L. Lembo, R. Johnson, F. Alvarez, D. Nichols, and J. Brock, "Simultaneous optical amplification and splitting for lower noise and higher gain microwave signal distribution," in Proc. SPIE 3160, 89-96 (1997). [CrossRef]
  6. B. Lee, E. Kim, H. K. Kim, D. M. Mackie, and C. M. Fitzpatrick, "Integrated-optic, lossless beam splitters," in Proc. SPIE 4112, 101-108 (2000). [CrossRef]
  7. L. J. Harrison, T. J. Tayag, G. J. Simonis, M. Stead, G. W. Euliss, and R. P. Leavitt, "Monolithic integration of 1.3-mm Stark-ladder electroabsorption waveguide modulators with multimode-interference splitters," IEEE Photon. Technol. Lett. 12, 657-659 (2000). [CrossRef]
  8. H.-L. Ma, J.-Y. Yang, X.-Q. Jiang, and M.-H. Wang, "Compact and economical MMI optical power splitter for optical communication," Chin. J. Semicond. 21, 966-969 (2000).
  9. D. M. Mackie, H. K. Kim, and C. M. Fitzpatrick, "Integrated, optically pumped, lossless splitters: progress and challenges," in Proceedings of the 22nd Army Science Conference (2000), pp. 51-52.
  10. K. C. Lin and W. Y. Lee, "Guided-wave 1.3/1.55-mm wavelength division multiplexer based on multimode interference," Electron. Lett. 32, 1259-1261 (1996). [CrossRef]
  11. D. Kuykendall, C. L. Reitsma, T. J. Tayag, D. M. Mackie, L. J. Harrison, G. W. Euliss, and R. P. Leavitt, "Wavelength division multiplexing coupler based on Talbot self-imaging in planar optical waveguides," in Proceedings of the Eleventh National Conference on Undergraduate Research (1997), Vol. III, pp. 1215-1219.
  12. D. M. Mackie, "Self-imaging waveguide optical polarization or wavelength splitters," U.S. patent 5,838,842 (17 November 1998).
  13. D. M. Mackie, "Self-imaging waveguide optical polarization or wavelength splitters," U.S. patent 5,852,691 (22 December 1998).
  14. T. Tayag and T. Batchman, "Self-imaging waveguide devices for wavelength division multiplexing applications," U.S. patent 5,862,288 (19 January 1999).
  15. B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, and X. Wang, "Low-loss 1 × 2 multimode interference wavelength demultiplexer in silicon-germanium alloy," IEEE Photon. Technol. Lett. 11, 575-577 (1999). [CrossRef]
  16. M. R. Paiam, C. F. Janz, R. I. MacDonald, and J. N. Broughton, "Compact planar 980/1550-nm wavelength multi/demultiplexer based on multimode interference," IEEE Photon. Technol. Lett. 7, 1180-1182 (1995). [CrossRef]
  17. D. M. Mackie, "End-pumped waveguide optical splitter-amplifiers based on self-imaging," U.S. patent 6,178,276 (23 January 2001).
  18. G. Kim, B. Kang, S. Lee, H. Chang, M. Choi, S. Lee, D. Woo, and S. Kim, "A multimode-interferenced electrooptic TE/TM mode splitter," in The Pacific Rim Conference on Lasers and Electro-Optics (CLEO/Pacific Rim '99) (IEEE, 1999), pp. 565-566.
  19. D. M. Mackie, T. J. Tayag, and T. E. Batchman, "Polarization separation/combination based on self-imaging," Opt. Eng. 40, 2265-2272 (2001). [CrossRef]
  20. B. M. A. Rahman, N. Somasiri, C. Themistos, and K. T. V. Grattan, "Design of optical polarization splitters in a single-section deeply etched MMI waveguide," Appl. Phys. B 73, 613-618 (2001).
  21. S.-L. Tsao, H.-C. Guo, and Y.-J. Chen, "A novel wavelength switch with a 2 × 2 MMI SOI photonic crystal inside," in Proc. SPIE 4453, 162-169 (2001). [CrossRef]
  22. S.-L. Tsao, H.-C. Guo, and Y.-J. Chen, "An SOI X-crossing optical switch," in Proc. SPIE 4458, 269-277 (2001). [CrossRef]
  23. D. S. Levy, R. Scarmozzino, Y. M. Li, and R. M. Osgood, "A new design for ultracompact multimode interference-based 2 × 2 couplers," IEEE Photon. Technol. Lett. 10, 96-98 (1998). [CrossRef]
  24. D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, C. Dries, P. Studenkov, and S. Forrest, "Fabrication of ultracompact 3-dB 2 × 2 MMI power splitters," IEEE Photon. Technol. Lett. 11, 1009-1011 (1999). [CrossRef]
  25. D. S. Levy, R. Scarmozzino, and R. M. Osgood, "Length reduction of tapered N × N MMI devices," IEEE Photon. Technol. Lett. 10, 830-832 (1998). [CrossRef]
  26. J. C. Campbell and T. Li, "Electro-optic multimode waveguide modulator or switch," J. Appl. Phys. 50, 6149-6154 (1979). [CrossRef]
  27. M. P. Earnshaw and D. W. E. Allsopp, "Semiconductor space switches based on multimode interference couplers," J. Lightwave Technol. 20, 643-650 (2002). [CrossRef]
  28. D. M. Mackie and A. W. Lee, "Slotted multimode interference devices for reduced-length integrated optical wavelength or polarization splitters," poster presentation at the Conference on Lasers and Electro-Optics, Baltimore, Md., 1 -6 June 2003.
  29. D. M. Mackie and A. W. Lee, "Slotted multimode interference devices," Appl. Opt. 43, 6609-6619 (2004). [CrossRef]
  30. D. M. Mackie, "Slotted multimode interference devices," U.S. patent 7,035,494 (25 April 2006).
  31. T. J. Tayag, D. M. Mackie, and G. W. Bryant, "A manufacturable technique for implementing low-loss self-imaging waveguide beamsplitters," IEEE Photon. Technol. Lett. 7, 896-898 (1995). [CrossRef]
  32. T. J. Tayag, "Easily manufacturable optical self-imaging waveguide," U.S. patent 5,640,474 (17 June 1997).
  33. D. M. Mackie and T. J. Tayag, "Form-birefringence in waveguide devices," in Integrated Photonics Research, Vol. 78 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), pp. IThl6-1-IThl6-3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited