OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 20 — Jul. 10, 2006
  • pp: 4957–4965

Single-frequency Sb-based distributed-feedback lasers emitting at 2.3 μm above room temperature for application in tunable diode laser absorption spectroscopy

Abdelmagid Salhi, David Barat, Daniele Romanini, Yves Rouillard, Aimeric Ouvrard, Ralph Werner, Jochen Seufert, Johannes Koeth, Aurore Vicet, and Arnaud Garnache  »View Author Affiliations


Applied Optics, Vol. 45, Issue 20, pp. 4957-4965 (2006)
http://dx.doi.org/10.1364/AO.45.004957


View Full Text Article

Enhanced HTML    Acrobat PDF (1262 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

GaInAsSb / GaAlAsSb / GaSb distributed-feedback (DFB) laser diodes based on a type I active region were fabricated by molecular beam epitaxy at the Centre d'Electronique et de Micro-Optoélectronique de Montpellier (CEM2). The DFB processing was done by Nanoplus Nanosystems and Technologies GmbH. The devices work in the continuous-wave regime above room temperature around an emission wavelength of 2.3   μm with a side-mode suppression ratio greater than 25   dB and as great as 10   mW of output power. The laser devices are fully characterized in terms of optical and electrical properties. Their tuning properties made them adaptable to tunable diode laser absorption spectroscopy because they exhibit more than 220   GHz of continuous tuning by temperature or current. The direct absorption of CH 4 is demonstrated to be possible with high spectral selectivity.

© 2006 Optical Society of America

OCIS Codes
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers

History
Original Manuscript: October 18, 2005
Manuscript Accepted: November 19, 2005

Virtual Issues
Vol. 1, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Abdelmagid Salhi, David Barat, Daniele Romanini, Yves Rouillard, Aimeric Ouvrard, Ralph Werner, Jochen Seufert, Johannes Koeth, Aurore Vicet, and Arnaud Garnache, "Single-frequency Sb-based distributed-feedback lasers emitting at 2.3 μm above room temperature for application in tunable diode laser absorption spectroscopy," Appl. Opt. 45, 4957-4965 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-20-4957


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. Yarekha, G. Glastre, A. Perona, Y. Rouillard, F. Genty, E. M. Skouri, G. Boissier, P. Grech, A. Joullie, C. Alibert, and A. N. Baranov, "High-temperature GaInSbAs/GaAlSbAs quantum-well single-mode continuous-wave lasers emitting near 2.3 μm," Electron. Lett. 36, 537-539 (2000).
  2. A. Salhi, Y. Rouillard, J. Angellier, and M. Garcia, "Very low threshold 2.4 μm GaInAsSb-AlGaAsSb laser diodes operating at room temperature in the continuous-wave regime," IEEE Photon. Technol. Lett. 16, 2424-2426 (2004). [CrossRef]
  3. D. Z. Garbuzov, R. U. Martinelli, H. Lee, P. K. York, R. J. Menna, J. C. Connolly, and S. Y. Narayan, "Ultralow-loss broadened waveguide high-power 2 μm AlGaAsSb/InGaAsSb/GaSb separate-confinement quantum-well lasers," Appl. Phys. Lett. 69, 2006-2008 (1996). [CrossRef]
  4. C. Lin, M. Grau, O. Dier, and M. C. Amann, "Low-threshold room-temperature cw operation of 2.24-3.04 μm GaInAsSb/AlGaAsSb quantum-well lasers," Appl. Phys. Lett. 84, 5088-5090 (2004). [CrossRef]
  5. A. Vicet, D. A. Yarekha, A. Perona, Y. Rouillard, S. Gaillard, and A. N. Baranov, "Trace gas detection with antimonide-based quantum-well diode lasers," Spectrochim. Acta Part A 58, 2405-2412 (2002). [CrossRef]
  6. D. B. Oh and A. Stanton, "Measurement of nitric oxide with an antimonide diode laser," Appl. Opt. 36, 3294-3297 (1997). [CrossRef] [PubMed]
  7. J. Wang, M. Maiorov, D. S. Baer, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, "In situ combustion measurements of CO with diode-laser absorption near 2.3 μm," Appl. Opt. 39, 5579-5589 (2000). [CrossRef]
  8. V. Zeninari, A. Vicet, B. Parvitte, L. Joly, and G. Durry, "In situ sensing of atmospheric CO2 with laser diodes near 2.05 μm:a spectroscopic study," Infrared Phys. Technol. 45, 229-237 (2004). [CrossRef]
  9. D. Mehuys, R. J. Lang, M. Mittelstein, J. Salzman, and A. Yariv, "Self-stabilized nonlinear lateral modes of broad area lasers," IEEE J. Quantum Electron. 23, 1909-1920 (1987). [CrossRef]
  10. M. Kamp, J. Hofmann, F. Schafer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, "Lateral coupling--a material independent way to complex coupled DFB lasers," Opt. Mater. 17, 19-25 (2001). [CrossRef]
  11. H. Kogelnik and C. V. Shank, "Coupled-wave theory of distributed feedback lasers," J. Appl. Phys. 43, 2327-2335 (1972). [CrossRef]
  12. L. A. Coldren and S. W. Corzine, "Dynamic effects," in Diode Lasers and Photonic Integrated Circuits, K. Chang, ed. (Wiley Interscience, 1995), Chap. 5, pp. 221.
  13. M. Hummer, K. Rossner, A. Benkert, and A. Forchel, "GaInAsSb-AlGaAsSb distributed feedback lasers emitting near 2.4 μm," IEEE Photon. Technol. Lett. 16, 380-382 (2004). [CrossRef]
  14. A. Vicet, D. A. Yarekha, A. Ouvrard, R. Teissier, C. Alibert, and A. N. Baranov, "Tunability of antimonide-based laser diodes and experimental evaluation of thermal resistance," IEE Proc. Optoelectron. 150, 310-313 (2003). [CrossRef]
  15. D. T. Cassidy, "Technique for measurement of the gain spectra of semiconductor diode lasers," J. Appl. Phys. 56, 3096-3099 (1984). [CrossRef]
  16. J. Morville, D. Romanini, M. Chenevier, and A. Kachanov, "Effects of laser phase noise on the injection of a high-finesse cavity," Appl. Opt. 41, 6980-6990 (2002). [CrossRef] [PubMed]
  17. L. Shterengas, G. L. Belenky, A. Gourevitch, J. G. Kim, and R. U. Martinelli, "Measurements of α−factor in 2-2.5 μm type I In(Al)GaAsSb/GaSb high-power diode lasers," Appl. Phys. Lett. 81, 4517-4519 (2002). [CrossRef]
  18. S. Schilt, A. Vicet, R. Werner, M. Mattiello, L. Thévenaz, A. Salhi, Y. Rouillard, and J. Koeth, "Application of antimonide diode lasers in photoacoustic spectroscopy," Spectrochim. Acta A 60, 3431-3436 (2004). [CrossRef]
  19. L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J. M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, and A. H. Smith, "The HITRAN database:1986 edition," Appl. Opt. 26, 4058-4097 (1987). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited