OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 20 — Jul. 10, 2006
  • pp: 4966–4971

Ammonia detection by using quantum-cascade laser photoacoustic spectroscopy

Milton B. Filho, Marcelo G. da Silva, Marcelo S. Sthel, Delson U. Schramm, Helion Vargas, Andras Miklós, and Peter Hess  »View Author Affiliations


Applied Optics, Vol. 45, Issue 20, pp. 4966-4971 (2006)
http://dx.doi.org/10.1364/AO.45.004966


View Full Text Article

Enhanced HTML    Acrobat PDF (163 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A pulsed quantum-cascade distributed-feedback laser, temperature tunable from 41 ° C to + 31.6 ° C , and a resonant differential photoacoustic detector are used to measure trace-gas concentrations to as low as 66 parts per 10 9 by volume ( ppbv ) ammonia at a low laser power of 2   mW . Good agreement between the experimental spectrum and the simulated HITRAN spectrum of NH 3 is found in the spectral range between 1046 and 1052   cm 1 . A detection limit of 30   ppbv ammonia at a signal-to-noise ratio of 1 was obtained with the quantum-cascade laser (QCL) photoacoustic (PA) setup. Concentration changes of 50   ppbv were detectable with this compact and versatile QCL-based PA detection system. The performance of the PA detector, characterized by the product of the incident laser power and the minimum detectable absorption coefficient, was 4.7 × 10 9   W   cm 1 .

© 2006 Optical Society of America

OCIS Codes
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(280.1120) Remote sensing and sensors : Air pollution monitoring
(300.6430) Spectroscopy : Spectroscopy, photothermal

History
Original Manuscript: October 26, 2005
Revised Manuscript: February 6, 2006
Manuscript Accepted: February 7, 2006

Citation
Milton B. Filho, Marcelo G. da Silva, Marcelo S. Sthel, Delson U. Schramm, Helion Vargas, Andras Miklós, and Peter Hess, "Ammonia detection by using quantum-cascade laser photoacoustic spectroscopy," Appl. Opt. 45, 4966-4971 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-20-4966


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, "Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 μm," Appl. Phys. B 67, 283-288 (1998). [CrossRef]
  2. I. Linnerud, P. Kaspersen, and T. Jaeger, "Gas monitoring in the process industry using diode laser spectroscopy," Appl. Phys. B 67, 297-305 (1998). [CrossRef]
  3. D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. I. Jiménez, "A tunable diode laser system for the remote sensing of on-road vehicle emissions," Appl. Phys. B 67, 433-441 (1998). [CrossRef]
  4. R. Claps, F. V. Englich, D. P. Leleux, D. Richter, F. K. Tittel, and R. F. Curl, "Ammonia detection by use of near-infrared diode-laser-based overtone spectroscopy," Appl. Opt. 40, 4387-4394 (2001). [CrossRef]
  5. M. E. Webber, R. Claps, F. V. Englich, F. K. Tittel, J. B. Jeffries, and R. K. Hanson, "Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 μm in bioreactor vent gases," Appl. Opt. 40, 4395-4403 (2001). [CrossRef]
  6. R. F. Curl and F. K. Tittel, "Tunable infrared laser spectroscopy," Annu. Rep. Prog. Chem. Sect. C 98, 217-270 (2002). [CrossRef]
  7. Z. Bozoki, A. Mohacsi, G. Szabo, Z. Bor, M. Erdelyi, W. Chen, and F. Tittel, "Near infrared diode based spectroscopic detection of ammonia:a comparative study of photoacoustic and direct optical absorption methods," Appl. Spectrosc. 56, 715-719 (2002). [CrossRef] [PubMed]
  8. A. Kosterev and F. K. Tittel, "Ammonia detection using quartz-enhanced photoacoustic spectroscopy with a near-IR telecommunication diode laser," Appl. Opt. 43, 6213-6217 (2004). [CrossRef] [PubMed]
  9. C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D. L. Sivco, A. M. Sergent, and A. Y. Cho, "Single-mode, tunable distributed-feedback, and multiple-wavelength quantum cascade lasers," IEEE J. Quantum Electron. QE-38, 569-581 (2002). [CrossRef]
  10. B. A. Paldus, T. G. Spence, R. N. Zare, J. Oomens, F. J. M. Harren, D. H. Parker, C. Gmachl, F. Cappasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, "Photoacoustic spectroscopy using quantum-cascade lasers," Opt. Lett. 24, 178-180 (1999). [CrossRef]
  11. A. A. Kosterev, A. L. Malinovsky, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, "Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser," Appl. Opt. 40, 5522-5529 (2001). [CrossRef]
  12. D. Hofstetter, M. Beck, J. Faist, M. Nagele, and M. W. Sigrist, "Photoacoustic spectroscopy with quantum cascade distributed-feedback lasers," Opt. Lett. 26, 887-889 (2001). [CrossRef]
  13. C. R. Webster, G. J. Flesch, D. C. Scott, J. E. Swanson, R. D. May, W. S. Woodward, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, "Quantum-cascade laser measurements of stratospheric methane and nitrous oxide," Appl. Opt. 40, 321-326 (2001). [CrossRef]
  14. A. A. Kosterev, R. F. Curl, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, "Transportable automated ammonia sensor based on a pulsed thermoelectrically cooled quantum-cascade distributed feedback laser," Appl. Opt. 41, 573-578 (2002). [CrossRef] [PubMed]
  15. A. A. Kosterev and F. K. Tittel, "Chemical sensors based on quantum cascade lasers," IEEE J. Quantum Electron. 38, 582-591 (2002). [CrossRef]
  16. D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, "Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-IR-quantum cascade laser spectrometer," Appl. Phys. B 75, 343-350 (2002). [CrossRef]
  17. S. Schilt, L. Thévenaz, E. Courtois, and P. A. Robert, "Ethylene spectroscopy using a quasi-room-temperature quantum cascade laser," Spectrochim. Acta Part A 58, 2533-2539 (2002). [CrossRef]
  18. A. A. Kosterev, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, S. Wehe, and M. G. Allen, "Thermoelectrically cooled quantum-cascade-laser-based sensor for the continuous monitoring of ambient atmospheric carbon monoxide," Appl. Opt. 41, 1169-1173 (2002). [CrossRef] [PubMed]
  19. A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, "Chemical sensing with pulsed QC-DFB lasers operating at 15.6 μm," Appl. Phys. B 75, 351-357 (2002). [CrossRef]
  20. T. Beyer, M. Braun, and A. Lambrecht, "Fast gas spectroscopy using pulsed quantum cascade lasers," J. Appl. Phys. 93, 3158-3160 (2003). [CrossRef]
  21. M. G. da Silva, H. Vargas, A. Miklós, and P. Hess, "Photoacoustic detection of ozone using quantum cascade laser," Appl. Phys. B 78, 1513-1516 (2004). [CrossRef]
  22. http://europa.eu.int/comm/agriculture/envir/report/en/acid_en/ report.htm.
  23. J. Kaiser, "The other global pollutant: nitrogen proves tough to curb," Science 294, 1268-1296 (2001). [CrossRef] [PubMed]
  24. http://www.inchem.org/documents/ehc/ehc/ehc54.htm.
  25. Official site of Canada's National Occupational Health and Safety Resource:http://www.ccohs.ca/oshanswers/chemicals/chem_profiles/ammonia/health_ammonia.html, 28 September 2005.
  26. R. A. Rooth, A. J. L. Verhage, and L. W. Wouters, "Photoacoustic measurement of ammonia in the atmosphere:influence of water vapor and carbon dioxide," Appl. Opt. 29, 3643-3653 (1990). [CrossRef] [PubMed]
  27. A. Schmohl, A. Miklós, and P. Hess, "Effects of adsorption-desorption processes on the response time and accuracy of photoacoustic detection of ammonia," Appl. Opt. 40, 2571-2578 (2001). [CrossRef]
  28. A. Schmohl, A. Miklós, and P. Hess, "Detection of ammonia by photoacoustic spectroscopy with semiconductor lasers," Appl. Opt. 41, 1815-1823 (2002). [CrossRef] [PubMed]
  29. White Martins (see http://www.praxair.com).
  30. http://www.hitran.com.
  31. A. Miklós, P. Hess, and Z. Bozóki, "Application of acoustic resonators in photoacoustic trace gas analysis and metrology," Rev. Sci. Instrum. 72, 1937-1955 (2001). [CrossRef]
  32. M. B. Pushkarsky, M. E. Webber, O. Baghdassarian, L. R. Narasimhan, and C. K. N. Patel, "Laser-based photoacoustic ammonia sensors for industrial applications," Appl. Phys. B 75, 391-396 (2002). [CrossRef]
  33. M. B. Pushkarsky, M. E. Webber, and C. K. N. Patel, "Ultrasensitive ambient ammonia detection using CO2-laser-based photoacoustic spectroscopy," Appl. Phys. B 77, 381-385 (2003). [CrossRef]
  34. S. Schilt, L. Thévenaz, M. Niklès, L. Emmenegger, and C. Hüglin, "Ammonia monitoring at trace level using photoacoustic spectroscopy in industrial and environmental applications," Spectrochim. Acta A 60, 3259-3268 (2004). [CrossRef]
  35. R. Claps, F. V. Englich, D. Leleux, D. Richter, F. K. Tittel, and R. F. Curl, "Ammonia detection by use of near-infrared diode laser-based overtone spectroscopy," Appl. Opt. 40, 4387-4394 (2001). [CrossRef]
  36. M. E. Webber, D. S. Baer, and R. Hanson, "Ammonia monitoring near 1.5 μm with diode-laser absorption sensors," Appl. Opt. 40, 2031-2042 (2001). [CrossRef]
  37. A. A. Kosterev and F. K. Tittel, "Ammonia detection using quartz-enhanced photoacoustic spectroscopy with a near-IR telecommunication diode laser," Appl. Opt. 43, 6213-6217 (2004). [CrossRef] [PubMed]
  38. M. E. Webber, T. MacDonald, M. B. Pushkarsky, C. K. N. Patel, Y.-J. Zhao, N. Marchillac, and F. M. Mitloehner, "Agricultural ammonia sensor using diode lasers and photoacoustic spectroscopy," Meas. Sci. Technol. 16, 1547-1553 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited