OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 20 — Jul. 10, 2006
  • pp: 5037–5045

High-resolution image reconstruction in fluorescence microscopy with patterned excitation

Rainer Heintzmann and Pier A. Benedetti  »View Author Affiliations

Applied Optics, Vol. 45, Issue 20, pp. 5037-5045 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (680 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We discuss data treatment strategies in structured illumination microscopy, using simulated and experimental data. In the setup, the illumination pattern is generated by projecting a movable pinhole mask into the sample, and a wide-field fluorescence microscope image is acquired for each pattern position. The structured illumination data obtained from a two-dimensional illumination pattern can be treated by projection strategies such as in video confocal microscopy (sum, maximum, maximum minus minimum, and superconfocal), by a scaled subtraction of the out-of-focus estimate, or by a modified version of the Fourier-space treatment, as is known for data from one-dimensional structured illumination. We investigate the influence of some data processing strategies on unwanted effects such as residual patterning and local deviations from linearity in the reconstructed intensity.

© 2006 Optical Society of America

OCIS Codes
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(100.3010) Image processing : Image reconstruction techniques
(100.6640) Image processing : Superresolution
(180.1790) Microscopy : Confocal microscopy
(180.2520) Microscopy : Fluorescence microscopy

Original Manuscript: August 24, 2005
Revised Manuscript: January 15, 2006
Manuscript Accepted: February 10, 2006

Virtual Issues
Vol. 1, Iss. 8 Virtual Journal for Biomedical Optics

Rainer Heintzmann and Pier A. Benedetti, "High-resolution image reconstruction in fluorescence microscopy with patterned excitation," Appl. Opt. 45, 5037-5045 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Petran, M. Hadravsky, M. D. Egger, and R. Galambos, "Tandem-scanning reflected-light microscope," J. Opt. Soc. Am. 58, 661-664 (1968). [CrossRef]
  2. J. Bewersdorf, R. Pick, and S. W. Hell, "Multifocal multiphoton microscopy," Opt. Lett. 23, 655-657 (1998). [CrossRef]
  3. V. Andresen, A. Egner, and S. W. Hell, "Time-multiplexed multifocal multiphoton microscope," Opt. Lett. 26, 75-77 (2001). [CrossRef]
  4. P. J. Verveer, Q. S. Hanley, P. W. Verbeek, L. J. van Vliet, and T. M. Jovin, "Theory of confocal fluorescence imaging in the Programmable Array Microscope (PAM)," J. Microsc. 189, 192-198 (1998). [CrossRef]
  5. Q. S. Hanley, P. J. Verveer, M. J. Gemkov, D. Arndt-Jovin, and T. M. Jovin, "An optical sectioning programmable array microscope implemented with a digital micromirror device," J. Microsc. 196, 317-331 (1999). [CrossRef] [PubMed]
  6. A. L. P. Dlugan, C. E. MacAulay, and P. M. Lane, "Improvements to quantitative microscopy through the use of digital micromirror devices," in Optical Diagnostics of Living Cells III, D. L. Farkas and R. C. Leif, eds., Proc. SPIE 3921, 6-11 (2000). [CrossRef]
  7. T. Fukano and A. Miyawaki, "Whole-field fluorescence microscope with a digital micromirror device: imaging of biological samples," Appl. Opt. 42, 4119-4124 (2003). [CrossRef] [PubMed]
  8. R. Heintzmann, Q. S. Hanley, D. Arndt-Jovin, and T. M. Jovin, "A dual path programmable array microscope (PAM): simultaneous acquisition of conjugate and non-conjugate images," J. Microsc. 204, 119-137 (2001). [CrossRef] [PubMed]
  9. P. A. Benedetti, V. Evangelista, D. Guidarini, and S. Vestri, "Achieving confocal point performance in confocal line microscopy," Bioimaging 2, 122-130 (1994). [CrossRef]
  10. P. A. Benedetti, V. Evangelista, D. Guidarini, and S. Vestri, "Electronic multiconfocal points microscopy," in Three-Dimensional Microscopy: Image Acquisition and Processing II, T. Wilson and C. J. Cogswell, eds., Proc. SPIE 2412, 56-62 (1995). [CrossRef]
  11. P. A. Benedetti, V. Evangelista, D. Guidarini, and S. Vestri, "Method for the acquisition of images by confocal microscopy," U.S. patent 6,016,367 (18 January 2000).
  12. R. Heintzmann and C. Cremer, "Method and device for representing an object," U.S. patent 6,909,105 (21 June 2005).
  13. R. Heintzmann, T. M. Jovin, and C. Cremer, "Saturated patterned excitation microscopy--a concept for optical resolution improvement," J. Opt. Soc. Am. A 19, 1599-1609 (2002). [CrossRef]
  14. R. Heintzmann, "Saturated patterned excitation microscopy with two-dimensional excitation patterns," Micron 34, 283-291 (2003). [CrossRef] [PubMed]
  15. M. G. L. Gustafsson, J. W. Sedat, and D. A. Agard, "Method and apparatus for three-dimensional microscopy with enhanced depth resolution," U.S. patent 5,671,085 (23 September 1997).
  16. M. G. L. Gustafsson, "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," J. Microsc. 198, 82-87 (2000). [CrossRef] [PubMed]
  17. M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, "Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination microscopy," in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing VII, J.-A. Conchello, C. J. Cogswell, A. G. Tescher, and T. Wilson, eds., Proc. SPIE 3919, 141-150 (2000). [CrossRef]
  18. M. A. A. Neil, R. Juskaitis, and T. Wilson, "Method of obtaining optical sectioning by using structured light in a conventional microscope," Opt. Lett. 22, 1905-1907 (1997). [CrossRef]
  19. R. Heintzmann and C. Cremer, "Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating," in Optical Biopsies and Microscopic Techniques III, I. J. Bigio, H. Schneckenburger, J. Slavik, K. Svanberg, and P. M. Viallet, eds., Proc. SPIE 3568, 185-196 (1999). [CrossRef]
  20. J. T. Frohn, H. F. Knapp, and A. Stemmer, "True optical resolution beyond the Rayleigh limit achieved by standing wave illumination," Proc. Natl. Acad. Sci. USA 97, 7232-7236 (2000). [CrossRef] [PubMed]
  21. J. T. Frohn, H. F. Knapp, and A. Stemmer, "Three-dimensional resolution enhancement in fluorescence microscopy by harmonic excitation," Opt. Lett. 26, 828-830 (2001). [CrossRef]
  22. W. Lukosz and M. Marchand, "Optischen Abbildung unter Überschreitung der beugungsbedingten Auflösungsgrenze," Opt. Acta 10, 241-255 (1963). [CrossRef]
  23. W. Lukosz, "Optical systems with resolving powers exceeding the classical limit. II," J. Opt. Soc. Am. 57, 932-941 (1967). [CrossRef]
  24. A. Shemer, D. Mendlovic, Z. Zalevsky, J. Garcia, and P. Garcia Martinez, "Superresolving optical system with time multiplexing and computer decoding," Appl. Opt. 38, 7245-7251 (1999). [CrossRef]
  25. A. Egner and S. W. Hell, "Equivalence of the Huygens-Fresnel and Debeye approach for the calculation of high aperture point-spread functions in the presence of refractive index mismatch," J. Microsc. 193, 244-249 (1999). [CrossRef]
  26. M. G. L. Gustafsson, Department of Physiology and Division of Bioengineering, University of California, San Francisco, Room GH-N412B, Box 2240, 600 16th Street, San Francisco, Calif. 94143-2240 (personal communication, 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited