OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 21 — Jul. 20, 2006
  • pp: 5107–5117

Interferometric polarization control

David T. Chuss, Edward J. Wollack, S. Harvey Moseley, and Giles Novak  »View Author Affiliations

Applied Optics, Vol. 45, Issue 21, pp. 5107-5117 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (275 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop the Jones and Mueller matrices for structures that allow control of the path length difference between two linear orthogonal polarizations and consider the effect of placing multiple devices in series. Specifically, we find that full polarization modulation (measurement of Stokes Q, U, and V) can be achieved by placing two such modulators in series if the relative angles of the beam-splitting grids with respect to the analyzer orientation are appropriately chosen. Such a device has several potential advantages over a spinning wave plate modulator for measuring astronomical polarization in the far infrared through millimeter: (i) The use of small, linear motions eliminates the need for cryogenic rotational bearings; (ii) the phase flexibility allows measurement of circular as well as linear polarization; and (iii) this architecture allows for both multiwavelength and broadband modulation. We also present initial laboratory results.

© 2006 Optical Society of America

OCIS Codes
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(230.5440) Optical devices : Polarization-selective devices
(260.5430) Physical optics : Polarization

ToC Category:

Original Manuscript: October 11, 2005
Revised Manuscript: January 5, 2006
Manuscript Accepted: January 25, 2006

David T. Chuss, Edward J. Wollack, S. Harvey Moseley, and Giles Novak, "Interferometric polarization control," Appl. Opt. 45, 5107-5117 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. S. Holland, W. Duncan, B. D. Kelly, K. D. Irwin, A. J. Walton, P. A. R. Ade, and E. I. Robson, "SCUBA-2: a new generation submillimeter imager for the James Clerk Maxwell Telescope," in Millimeter and Submillimeter Detectors for Astronomy, T. G. Phillips and J. Zmuidzinas, eds., Proc. SPIE 4855, 1-18 (2003). [CrossRef]
  2. D. A. Harper, A. E. Bartels, S. C. Casey, D. T. Chuss, J. L. Dotson, R. Evans, S. Heimsath, R. A. Hirsch, S. Knudsen, R. F. Loewenstein, S. H. Moseley, M. Newcomb, R. J. Pernic, T. S. Rennick, E. Sandberg, D. B. Sandford, M. L. Savage, R. F. Silverberg, R. Spotz, G. M. Voellmer, P. W. Waltz, S. Wang, and C. Wirth, "Development of the HAWC far-infrared camera for SOFIA," in UV and Gamma-Ray Space Telescope Systems, G. Hasinger and M. J. L. Turner, eds., Proc. SPIE 5492, 1064-1073 (2004). [CrossRef]
  3. J. Tinbergen, Astronomical Polarimetry (Cambridge, 1996). [CrossRef]
  4. R. H. Hildebrand, J. A. Davidson, J. L. Dotson, C. D. Dowell, G. Novak, and J. E. Vaillancourt, "A primer on far-infrared polarimetry," Publ. Astron. Soc. Pac. 112, 1215-1235 (2000). [CrossRef]
  5. D. H. Martin, in Infrared and Millimeter Waves, J.Button, ed. (Academic Press, 1974), Vol. 6.
  6. D. Martin and E. Puplett, "Polarised interferometric spectrometry for the millimetre and submillimetre spectrum," Infrared Phys. 10, 105-109 (1970). [CrossRef]
  7. E. Battistelli, M. DePetris, L. Lamagna, R. Maoli, F. Melchiorri, E. Palladino, and G. Savini, "Far infrared polarimeter with very low instrumental polarization," arXiv.org e-Print archive, version 1, astro-ph/0209180, http://arxiv.org/astro-ph/astro-ph/0209180.
  8. P. Lubin (personal communication).
  9. B. R. Johnson, M. E. Abroe, P. Ade, J. Bock, J. Borrill, J. S. Collins, P. Ferreira, S. Hanany, A. H. Jaffe, T. Jones, A. T. Lee, L. Levinson, T. Matsumura, B. Rabii, T. Renbarger, P. L. Richards, G. F. Smoot, R. Stompor, H. T. Tran, and C. D. Winant, "MAXIPOL: a balloon-borne experiment for measuring the polarization anisotropy of the cosmic microwave background radiation," New Astron. Rev. 47, 1067-1075 (2003). [CrossRef]
  10. K. Serkowski, in Methods of Experimental Physics,N.Carleton, ed. (Academic, 1974), Vol. 12.
  11. G. Novak, D. Gonatas, R. Hildebrand, and S. Platt, "A 100-μm polarimeter for the Kuiper Airborne Observatory," Publ. Astron. Soc. Pac. 101, 215-224 (1989). [CrossRef]
  12. G. Siringo, E. Kreysa, L. A. Reichertz, and K. M. Menten, "A new polarimeter for (sub)millimeter bolometer arrays," Astron. Astrophys. 422, 751-760 (2004). [CrossRef]
  13. T. Manabe, J. Inatani, A. Murk, R. J. Wylde, M. Seta, and D. H. Martin, "A new configuration of polarization-rotating dual-beam interferometer for space use," IEEE Trans. Microwave Theory Tech. 51, 1696-1704 (2003). [CrossRef]
  14. P. F. Goldsmith, Quasioptical Systems (IEEE Press, 1998). [CrossRef]
  15. E. Wollack and W. Grammer, "Symmetric waveguide orthomode junctions," in Proceedings of the 14th International Symposium on Space TeraHertz Technology, E.Walker and J.Payne, eds. (2003), pp. 169-176.
  16. R. Jones, "New calculus for the treatment of optical systems," J. Opt. Soc. Am. 31, 488-493 (1941). [CrossRef]
  17. C. Brosseau, Fundamentals of Polarized Light (Wiley, 1998).
  18. J. Jackson, Classical Electrodynamics (Wiley, 1967).
  19. D. E. Budil, Z. Ding, G. R. Smith, and K. A. Earle, "Jones matrix formalism for quasioptical EPR," J. Magn. Reson. 144, 20-34 (2000). [CrossRef] [PubMed]
  20. S. Sternberg, Group Theory and Physics (Cambridge, 1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited