OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 21 — Jul. 20, 2006
  • pp: 5118–5131

Laser beam shaping profiles and propagation

David L. Shealy and John A. Hoffnagle  »View Author Affiliations


Applied Optics, Vol. 45, Issue 21, pp. 5118-5131 (2006)
http://dx.doi.org/10.1364/AO.45.005118


View Full Text Article

Enhanced HTML    Acrobat PDF (578 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We consider four families of functions—the super-Gaussian, flattened Gaussian, Fermi–Dirac, and super-Lorentzian—that have been used to describe flattened irradiance profiles. We determine the shape and width parameters of the different distributions, when each flattened profile has the same radius and slope of the irradiance at its half-height point, and then we evaluate the implicit functional relationship between the shape and width parameters for matched profiles, which provides a quantitative way to compare profiles described by different families of functions. We conclude from an analysis of each profile with matched parameters using Kirchhoff–Fresnel diffraction theory and M 2 analysis that the diffraction patterns as they propagate differ by small amounts, which may not be distinguished experimentally. Thus, beam shaping optics is designed to produce either of these four flattened output irradiance distributions with matched parameters will yield similar irradiance distributions as the beam propagates.

© 2006 Optical Society of America

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(260.1960) Physical optics : Diffraction theory
(350.5500) Other areas of optics : Propagation

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: December 12, 2005
Revised Manuscript: March 12, 2006
Manuscript Accepted: March 15, 2006

Citation
David L. Shealy and John A. Hoffnagle, "Laser beam shaping profiles and propagation," Appl. Opt. 45, 5118-5131 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-21-5118


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. M. Dickey, S. C. Holswade, and D. L. Shealy, eds., Laser Beam Shaping Applications (CRC Press, 2005). [CrossRef]
  2. J. Kreuzer, "Laser light redistribution in illuminating optical signal processing systems," in Optical and Electro-Optical Information Processing, J.T.Tippett, D.A.Berkowitz, L.C.Clapp, C.J.Koester, and A. Vanderburgh, Jr., eds. (Massachusetts Institute of Technology Press, 1965), pp. 365-369.
  3. B. R. Frieden, "Lossless conversion of a plane laser wave to a plane wave of uniform irradiance," Appl. Opt. 4, 1400-1403 (1965). [CrossRef]
  4. J. L. Kreuzer, "Coherent light optical system yielding an output beam of desired intensity distribution at a desired equiphase surface," U.S. patent 3,476,463 (4 November 1969).
  5. O. Bryngdahl, "Geometrical transforms in optics," J. Opt. Soc. Am. 64, 1092-1099 (1974). [CrossRef]
  6. L. A. Romero and F. M. Dickey, "Lossless laser beam shaping," J. Opt. Soc. Am. A 13, 751-760 (1996). [CrossRef]
  7. H. Aagedal, M. Schmid, S. Egner, J. Müller-Quade, J. Beth, and F. Wyrowski, "Analytical beam shaping with application to laser-diode arrays," J. Opt. Soc. Am. A 14, 1549-1553 (1997). [CrossRef]
  8. F. M. Dickey and S. C. Holswade, eds., Laser Beam Shaping: Theory and Techniques (Marcel Dekker, 2000). [CrossRef]
  9. S. Sinzinger and J. Jahns, Microoptics (Wiley-VCH Verlag, 2003), pp. 271-299.
  10. H. Aagedal, F. Wyrowski, and M. Schmid, "Paraxial beam splitting and shaping," in Diffractive Optics for Industrial and Commercial Applications, J.Turunen and F.Wyrowski, eds. (Akademic-Verlag, 1997), Chap. 6.
  11. M. R. Feldman, A. D. Kathman, W. H. Welch, and T. Tkolste, "Integrated beam shaper and use thereof," U.S. patent 6,128,134 (3 October 2000).
  12. P. W. Scott and W. H. Southwell, "Reflective optics for irradiance redistribution of laser beams: design," Appl. Opt. 20, 1606-1610 (1981). [CrossRef] [PubMed]
  13. P. W. Malyak, "Two-mirror unobscured optical system for reshaping the irradiance distribution of a laser beam," Appl. Opt. 31, 4377-4383 (1992). [CrossRef] [PubMed]
  14. D. L. Shealy, "History of beam shaping," in Laser Beam Shaping Applications, F.M.Dickey, S.C.Holswade, and D.L.Shealy, eds. (CRC Press, 2005), pp. 307-347. [CrossRef]
  15. W. Jiang, D. L. Shealy, and J. C. Martin, "Design and testing of a refractive reshaping system," in Current Developments in Optical Design and Optical Engineering III, R.E.Fischer and W.J.Smith, eds., Proc. SPIE 2000,64-75 (1993).
  16. W. Jiang and D. L. Shealy, "Development and testing of a refractive laser beam shaping system," in Laser Beam Shaping, F.M.Dickey and S.C.Holswade, eds., Proc. SPIE 4095,165-175 (2000).
  17. J. A. Hoffnagle and C. M. Jefferson, "Design and performance of a refractive optical system that converts a Gaussian to a flattop beam," Appl. Opt. 39, 5488-5499 (2000). [CrossRef]
  18. J. A. Hoffnagle and C. M. Jefferson, "Refractive optical system that converts a laser beam to a collimated flat-top beam," U.S. patent 6,295,168 (25 September 2001).
  19. J. A. Hoffnagle and C. M. Jefferson, "Beam shaping with a plano-aspheric lens pair," Opt. Eng. 42, 3090-3099 (2003). [CrossRef]
  20. S. De Silvestri, P. Laporta, V. Magni, O. Svelto, and B. Majocchi, "Unstable laser resonators with super-Gaussian mirrors," Opt. Lett. 13, 201-203 (1988). [CrossRef] [PubMed]
  21. A. Parent, M. Morin, and P. Lavigne, "Propagation of super-Gaussian field distributions," Opt. Quantum Electron. 24, S1071-S1079 (1992). [CrossRef]
  22. F. Gori, "Flattened Gaussian beams," Opt. Commun. 107, 335-341 (1994). [CrossRef]
  23. R. Borghi, "Elegant Laguerre-Gauss beams as a new tool for describing axisymmetric flattened Gaussian beams," J. Opt. Soc. Am. A 18, 1627-1633 (2001). [CrossRef]
  24. V. Bagini, R. Borghi, F. Gori, A. M. Pacileo, M. Santarsiero, D. Ambroshini, and G. Schirripa-Spagnolo, "Propagation of axially symmetric flattened Gaussian beams," J. Opt. Soc. Am. A 13, 1385-1394 (1996). [CrossRef]
  25. B. Lü, B. Zhang, and S. Zuo, "Far-field intensity distribution, M2 factor, and propagation of flattened Gaussian beams," Appl. Opt. 38, 4581-4585 (1999). [CrossRef]
  26. Z. Mei and D. Zhao, "Approximate method for the generalizedM 2 factor of rotationally symmetric hard-edged diffracted flattened Gaussian beams," Appl. Opt. 44,1381-1386 (2005). [PubMed]
  27. Y. Li, "New expressions for flat-topped light beams," Opt. Commun. 206, 225-234 (2002). [CrossRef]
  28. Y. Li, "Light beams with flat-topped profiles," Opt. Lett. 27, 1007-1009 (2002). [CrossRef]
  29. F. M. Dickey and S. C. Holswade, "Gaussian laser beam profile shaping," Opt. Eng. 35, 3285-3295 (1996). [CrossRef]
  30. Maple 9.50, Copyright held by Maplesoft, a division of Waterloo Maple, Inc.
  31. D. L. Shealy and J. A. Hoffnagle, "Beam shaping profiles and propagation," in Laser Beam Shaping VI, F.M.Dickey and D.L.Shealy, eds., Proc. SPIE 5876,99-109 (2005).
  32. M. Santarsiero and R. Borghi, "Correspondence between super-Gaussian and flattened Gaussian beams," J. Opt. Soc. Am. A 16, 188-190 (1999). [CrossRef]
  33. J. K. Kasinski and R. L. Burnham, "Near-diffraction-limited laser beam shaping with diamond-turned aspheric optics," Opt. Lett. 22, 1062-1064 (1997). [CrossRef] [PubMed]
  34. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).
  35. J. P. Campbell and L. G. DeShazer, "Near fields of truncated-Gaussian apertures," J. Opt. Soc. Am. 59, 1427-1429 (1969). [CrossRef]
  36. S. Vicalvi, R. Borghi, M. Santarsiero, and F. Gori, "Shape-invariance error for axially symmetric light beams," IEEE J. Quantum Electron. QE-34, 2109-2116 (1998). [CrossRef]
  37. F. Gori, S. Vicalvi, M. Santarsiero, and R. Borghi, "Shape-invariance range of a light beam," Opt. Lett. 21, 1205-1207 (1996). [CrossRef] [PubMed]
  38. A. E. Siegman, "New developments in laser resonators," in Optical Resonators, D.A.Holmes, ed., Proc. SPIE 1224,2-14 (1990).
  39. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Mathematics Series No. 55, 6th printing (U.S. Government Printing Office, 1967).
  40. H. J. Weaver, Applications of Discrete and Continuous Fourier Analysis (Wiley, 1983).
  41. G. B. Folland, Fourier Analysis and its Applications (Wadsworth & Brook, 1992), pp. 248-249.
  42. P. Rhodes, "Fermi-Dirac functions of integral order," Proc. R. Soc. 204, 396-405 (1950). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited